1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation ...1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation platforms are essential in this area,as they simulate agent behaviors in set environments and tasks,thereby accelerating algorithm validation and optimization.However,constructing such a platform presents several challenges.展开更多
The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe develop...The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%.展开更多
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention...Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.展开更多
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo...Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.展开更多
Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted ...Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.展开更多
AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for H...AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for HIL (hardware in the loop) simulators required for control, protection design and testing due to the large number of cells that must be simulated individually using very small time steps. This paper demonstrates the advantages of using a very small time step to simulate a MMC topology. The MMC is implemented on FPGA (fiel-programmable gate array) to simulate fast transient with a time step of 250 ns. The AC network and HVDC bus is simulated on the PC, with a slower time step of 10 μs to 20 μs. The simulator architecture and the components simulated on the FPGA and on the PC will be discussed, as well as the method allowing the interconnection of this slow and fast system.展开更多
This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly redu...This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62322601).
文摘1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation platforms are essential in this area,as they simulate agent behaviors in set environments and tasks,thereby accelerating algorithm validation and optimization.However,constructing such a platform presents several challenges.
基金supported by the National Natural Science Foundation of China (Nos. 42027801, 42072284, and 42372297)the National Key Research and Development Program of China (Nos. 2023YFC3012102 and 2021YFC2902004)the Fundamental Research Funds for the Central Universities (No. 2023ZKPYSH01)
文摘The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)the National Natural Science Foundation of China(Key Program)(62136003)+2 种基金the National Natural Science Foundation of China(62394345)the Major Science and Technology Projects of Longmen Laboratory(LMZDXM202206)the Fundamental Research Funds for the Central Universities.
文摘Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.
文摘Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.
基金National Natural Science Foundation of China(No.51475459)Fundamental Research Funds for the Central Universities of China(No.2017XKQY040)Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.PAPD)
文摘Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.
文摘AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for HIL (hardware in the loop) simulators required for control, protection design and testing due to the large number of cells that must be simulated individually using very small time steps. This paper demonstrates the advantages of using a very small time step to simulate a MMC topology. The MMC is implemented on FPGA (fiel-programmable gate array) to simulate fast transient with a time step of 250 ns. The AC network and HVDC bus is simulated on the PC, with a slower time step of 10 μs to 20 μs. The simulator architecture and the components simulated on the FPGA and on the PC will be discussed, as well as the method allowing the interconnection of this slow and fast system.
基金supported in part by the Natural Sciences and Engineering Research Council(NSERC)of Canada,MITACS Accelerate,Manitoba Hydro,and by the University of Manitoba。
文摘This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.