Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were ...Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.展开更多
Copper and silver nanoparticles were synthesized and characterized in two minutes at 175<span style="white-space:nowrap;">°</span>C in a one-step synthesis using a modified polyol (ethyl...Copper and silver nanoparticles were synthesized and characterized in two minutes at 175<span style="white-space:nowrap;">°</span>C in a one-step synthesis using a modified polyol (ethylene glycol) method and a microwave heating process. We successfully synthesized spherical Silver (Ag) and Copper nanoparticles (CuNP) with a crystallite size of less than 10 nm, as well as irregular silver-copper nanoparticles (AgCuNP) with a crystallite size of less than 15 nm, as confirmed by X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM). The successful synthesis of AgCuNP with 1:1 molar ratio and constituted by 51.74% of copper and 48.26% of silver was corroborated using the Energy Dispersive X-ray (EDX) mapping technique. The AgNP and AgCuNP exhibited more stability in suspension, in comparison to CuNP, as observed by continuously monitoring the absorbance with UV-Vis spectroscopy for 12 days. Furthermore, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNP, CuNP, and AgCuNP were determined, against Gram-negative and Gram-positive bacteria, and yeast. The obtained MIC and MBC values indicate that AgCu nanoparticles exhibited bactericidal properties greater than its constituents. On the contrary, antifungal activity of AgCuNP against yeast was not observed.展开更多
文摘Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.
文摘Copper and silver nanoparticles were synthesized and characterized in two minutes at 175<span style="white-space:nowrap;">°</span>C in a one-step synthesis using a modified polyol (ethylene glycol) method and a microwave heating process. We successfully synthesized spherical Silver (Ag) and Copper nanoparticles (CuNP) with a crystallite size of less than 10 nm, as well as irregular silver-copper nanoparticles (AgCuNP) with a crystallite size of less than 15 nm, as confirmed by X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM). The successful synthesis of AgCuNP with 1:1 molar ratio and constituted by 51.74% of copper and 48.26% of silver was corroborated using the Energy Dispersive X-ray (EDX) mapping technique. The AgNP and AgCuNP exhibited more stability in suspension, in comparison to CuNP, as observed by continuously monitoring the absorbance with UV-Vis spectroscopy for 12 days. Furthermore, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNP, CuNP, and AgCuNP were determined, against Gram-negative and Gram-positive bacteria, and yeast. The obtained MIC and MBC values indicate that AgCu nanoparticles exhibited bactericidal properties greater than its constituents. On the contrary, antifungal activity of AgCuNP against yeast was not observed.