期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Constructing the metabolic network of wheat kernels based on structure-guided chemical modification and multi-omics data 被引量:1
1
作者 Zhitao Tian Jingqi Jia +1 位作者 Bo Yin Wei Chen 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2024年第7期714-722,共9页
Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities,although it often proves to be challenging and labor-intensive,particularly with non-model organisms.... Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities,although it often proves to be challenging and labor-intensive,particularly with non-model organisms.In this study,we develop a computational approach that employs reaction models based on the structure-guided chemical modification and related compounds to construct a metabolic network in wheat.This construction results in a comprehensive structure-guided network,including 625 identified metabolites and additional 333 putative reactions compared with the Kyoto Encyclopedia of Genes and Genomes database.Using a combination of gene annotation,reaction classification,structure similarity,and correlations from transcriptome and metabolome analysis,a total of 229 potential genes related to these reactions are identified within this network.To validate the network,the functionality of a hydroxycinnamoyltransferase(TraesCS3D01G314900)for the synthesis of polyphenols and a rhamnosyltransferase(TraesCS2D01G078700)for the modification of flavonoids are verified through in vitro enzymatic studies and wheat mutant tests,respectively.Our research thus supports the utility of structure-guided chemical modification as an effective tool in identifying causal candidate genes for constructing metabolic networks and further in metabolomic genetic studies. 展开更多
关键词 Metabolic network Chemical modification Genetic study Wheat kernel Multi-omics
原文传递
Joint input–output identification of unstable systems with kernel regularization
2
作者 Yusuke Fujimoto Toshiharu Sugie 《Control Theory and Technology》 EI CSCD 2024年第2期195-202,共8页
This paper discusses closed-loop identification of unstable systems.In particular,wefirst apply the joint input–output identification method and then convert the identification problem of unstable systems into that of st... This paper discusses closed-loop identification of unstable systems.In particular,wefirst apply the joint input–output identification method and then convert the identification problem of unstable systems into that of stable systems,which can be tackled by using kernel-based regularization methods.We propose to identify two transfer functions by kernel regularization,the one from the reference signal to the input,and the one from the reference signal to the output.Since these transfer functions are stable,kernel regularization methods can construct their accurate models.Then the model of unstable system is constructed by ratio of these functions.The effectiveness of the proposed method is demonstrated by a numerical example and a practical experiment with a DC motor. 展开更多
关键词 Closed-loop identification kernel regularization Joint input-output identification
原文传递
ON THE REGULARIZATION METHOD OF THE FIRST KIND OFFREDHOLM INTEGRAL EQUATION WITH A COMPLEX KERNEL AND ITS APPLICATION
3
作者 尤云祥 缪国平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第1期75-83,共9页
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg... The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given. 展开更多
关键词 inverse problem Fredholm integral equation of the first kind complex kernel regularization method
在线阅读 下载PDF
Solving Neumann Boundary Problem with Kernel-Regularized Learning Approach
4
作者 Xuexue Ran Baohuai Sheng 《Journal of Applied Mathematics and Physics》 2024年第4期1101-1125,共25页
We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner... We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner product defined on both the unit ball and the unit sphere, construct the kernel-regularized learning algorithm from the view of semi-supervised learning and bound the upper bounds for the learning rates. The theory analysis shows that the learning algorithm has better uniform convergence according to the number of samples. The research can be regarded as an application of kernel-regularized semi-supervised learning. 展开更多
关键词 Neumann Boundary Value kernel-regularized Approach Reproducing kernel Hilbert Space The Unit Ball The Unit Sphere
在线阅读 下载PDF
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
5
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
在线阅读 下载PDF
The Spectral Analysis and Application of Low-degree Modified Spheroidal Hotine Kernel 被引量:2
6
作者 Jian MA Ziqing WEI Hongfei REN 《Journal of Geodesy and Geoinformation Science》 2020年第3期104-114,共11页
The traditional spheroidal kernel results in the spectrum leakage,and the utilization rate of the removed degrees of the measured data is low.Hence,a kind of spheroidal kernel whose high-and low-degrees are both modif... The traditional spheroidal kernel results in the spectrum leakage,and the utilization rate of the removed degrees of the measured data is low.Hence,a kind of spheroidal kernel whose high-and low-degrees are both modified is introduced in this research,which is exampled by the Hotine kernel.In addition,the low-degree modified spheroidal kernel is proposed.Either cosine or linear modification factors can be utilized.The modified kernel functions can effectively control the spectrum leakage compared with the traditional spheroidal kernel.Furthermore,the modified kernel augments the contribution rate of the measured data to height anomaly in the modified frequency domain.The experimental results show that the accuracy of the quasi-geoid by the cosine or linear low-degree modified kernel is higher than that by the traditional spheroidal kernel.And the accuracy equals the accuracy of the quasi-geoid using the spheroidal kernel with high-and low-degrees modified approximately when the low-degree modification bandwidths of these two kinds of kernels are the same.Since the computational efficiency of the low-degree modified kernel is much higher,the low-degree modified kernel behaves better in constructing the(quasi-)geoid based on Stokes-Helmert or Hotine-Helmert boundary-value theory. 展开更多
关键词 the spheroidal Hotine kernel cosine low-degree modification linear low-degree modification spectral analysis spectrum leakage the contribution rate
在线阅读 下载PDF
一种基于块平均正交权重修正的连续学习算法 被引量:2
7
作者 廖丁丁 刘俊峰 +1 位作者 曾君 邱晓欢 《计算机工程》 北大核心 2025年第6期57-64,共8页
连续学习能力是人类智能行为的一个重要的方面,可使人类具有持续获取新知识的能力。然而,大量的研究表明,当前常规的深度神经网络并不具备这样的连续学习能力,它们在序列学习新任务后,往往会对已学习的任务产生灾难性遗忘,从而无法持续... 连续学习能力是人类智能行为的一个重要的方面,可使人类具有持续获取新知识的能力。然而,大量的研究表明,当前常规的深度神经网络并不具备这样的连续学习能力,它们在序列学习新任务后,往往会对已学习的任务产生灾难性遗忘,从而无法持续地积累新知识,这限制了智能水平的进一步提升。因而,使深度神经网络具备连续学习能力是达成强人工智能技术的一项重要课题。提出一种基于块平均正交权重修正的连续学习算法(B-OWM)。该算法采用具有极优值分块数的输入样本块平均向量组作为输入空间的表示,结合正交权重修正(OWN)思想来更新网络参数,使得深度神经网络模型在学习新任务时可以克服对已学习知识的灾难性遗忘。在多个数据集上进行的大量任务不相交类增量连续学习实验表明,B-OWM在连续学习性能上显著优于OWM算法,尤其在大批次数连续学习场景中,测试精度提升率可达80%。 展开更多
关键词 连续学习 正交权重修正 深度学习 正则化 灾难性遗忘
在线阅读 下载PDF
执行器约束下基于轨迹学习的核正则化最优迭代学习控制
8
作者 杨亮亮 陈泓 鲁文其 《中国机械工程》 北大核心 2025年第10期2274-2283,共10页
针对非重复性轨迹跟踪和执行器可能超限的问题,提出了一种基于先前轨迹学习的核正则化最优迭代学习控制算法(KROILC),在迭代过程中利用输入输出的测量值,使用基于核的正则化方法估计系统的脉冲响应,展示了脉冲响应估计领域几种常用核的... 针对非重复性轨迹跟踪和执行器可能超限的问题,提出了一种基于先前轨迹学习的核正则化最优迭代学习控制算法(KROILC),在迭代过程中利用输入输出的测量值,使用基于核的正则化方法估计系统的脉冲响应,展示了脉冲响应估计领域几种常用核的零均值高斯过程实现,估计得到的脉冲响应被应用于最优迭代学习控制器。通过目标函数加权实现对执行器的约束,迭代过程中参考轨迹变化后的初始前馈力通过轨迹学习得到。在直流无刷电机上的实验验证结果表明,所提出的算法能够在执行器约束下实现非重复性轨迹的全轨迹和稳定段的最优跟踪性能。 展开更多
关键词 执行器约束 数据驱动 非重复性轨迹 轨迹学习 核正则化 迭代学习控制
在线阅读 下载PDF
LKP-tests适配分析及软件包缺失问题自动识别与修复
9
作者 王振强 翟高寿 +2 位作者 吴峰光 郭小康 孙思雨 《软件导刊》 2025年第6期72-78,共7页
操作系统测试是操作系统质量保障及自主可控的前提和基础,而集成现有各种开源测试工具是构建操作系统测试平台的现实可行路线。首先,重点分析了Linux测试集成平台LKP-tests的测试工具集成组织结构及其应用于openEuler、Debian和CentOS... 操作系统测试是操作系统质量保障及自主可控的前提和基础,而集成现有各种开源测试工具是构建操作系统测试平台的现实可行路线。首先,重点分析了Linux测试集成平台LKP-tests的测试工具集成组织结构及其应用于openEuler、Debian和CentOS可能遭遇的软件包缺失问题,并设计实现了软件包缺失自动识别与修复系统;其次,该系统通过正则表达式来分类描述源自测试运行结果的错误信息,提取其中的缺失组件名称;最后,利用对应操作系统的包管理器,解析确定有关组件所属的软件包,并完成LKP-tests中相应软件包依赖的添加与整合。实验表明,该模型对软件包缺失问题进行自动修复的比例均高于91%,可有效减少LKP-tests应用过程中的人工干预并改善其运营维护,对其他类似的大型开源软件集成项目亦有借鉴意义。 展开更多
关键词 LINUX LKP-tests 内核测试 正则表达式 自动修复 软件包缺失
在线阅读 下载PDF
带时间依赖记忆核的非局部非经典扩散方程解的长时间动力学行为
10
作者 汪璇 史慧霞 《吉林大学学报(理学版)》 北大核心 2025年第5期1276-1292,共17页
当非线性项满足次临界增长条件时,在时间依赖空间H_(0)^(1)(Ω)×L_(μt)^(2)(R+;H_(0)^(1)(Ω))中讨论带时间依赖记忆核的非局部非经典扩散方程解的长时间动力学行为.先利用Galerkin逼近法得到解的适定性和正则性,然后借助分解技... 当非线性项满足次临界增长条件时,在时间依赖空间H_(0)^(1)(Ω)×L_(μt)^(2)(R+;H_(0)^(1)(Ω))中讨论带时间依赖记忆核的非局部非经典扩散方程解的长时间动力学行为.先利用Galerkin逼近法得到解的适定性和正则性,然后借助分解技巧和积分估计法证明时间依赖全局吸引子的存在性和正则性. 展开更多
关键词 非局部非经典扩散方程 时间依赖记忆核 时间依赖全局吸引子 正则性
在线阅读 下载PDF
An Interpretable Denoising Layer for Neural Networks Based on Reproducing Kernel Hilbert Space and its Application in Machine Fault Diagnosis 被引量:9
11
作者 Baoxuan Zhao Changming Cheng +3 位作者 Guowei Tu Zhike Peng Qingbo He Guang Meng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期104-114,共11页
Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods ... Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments. 展开更多
关键词 Machine fault diagnosis Reproducing kernel Hilbert space(RKHS) regularization problem Denoising layer Neural network
在线阅读 下载PDF
REGULARITY AND SYMMETRY OF SOLUTIONS OF AN INTEGRAL SYSTEM 被引量:2
12
作者 陈晓莉 杨健夫 《Acta Mathematica Scientia》 SCIE CSCD 2012年第5期1759-1780,共22页
In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β... In this paper,we are concerned with the regularity and symmetry of positive solutions of the following nonlinear integral system u(x) = ∫R n G α(x-y)v(y) q/|y|β dy,v(x) = ∫R n G α(x-y)u(y) p/|y|β dy for x ∈ R n,where G α(x) is the kernel of Bessel potential of order α,0 ≤β 〈 α 〈 n,1 〈 p,q 〈 n-β/β and 1/p + 1 + 1/q + 1 〉 n-α + β/n.We show that positive solution pairs(u,v) ∈ L p +1(R n) × L q +1(R n) are Ho¨lder continuous,radially symmetric and strictly decreasing about the origin. 展开更多
关键词 regularITY radially symmetry Bessel kernel nonlinear integral system
在线阅读 下载PDF
THE PERMUTATION FORMULA OF SINGULAR INTEGRALS WITH BOCHNER-MARTINELLI KERNEL ON STEIN MANIFOLDS 被引量:1
13
作者 钟同德 陈吕萍 《Acta Mathematica Scientia》 SCIE CSCD 2006年第4期679-690,共12页
Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an a... Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation. 展开更多
关键词 Stein manifold singular integral with Bochner-Martinelli kernel permutation formula regularization problem
在线阅读 下载PDF
Elastic Multiple Kernel Learning 被引量:6
14
作者 WU Zheng-Peng ZHANG Xue-Gong 《自动化学报》 EI CSCD 北大核心 2011年第6期693-699,共7页
(MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以... (MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以忽略有用信息。在这份报纸,我们建议学习的有弹性的多重核(EMKL ) 完成适应的核熔化。EMKL 使用混合规则化功能损害稀少和非稀少。MKL 和 SVM 能被认为是 EMKL 的特殊情况。为 MKL 问题基于坡度降下算法,我们建议一个快算法解决 EMKL 问题。模拟数据集上的结果证明 EMKL 的表演有利地比作 MKL 和 SVM。我们进一步把 EMKL 用于基因集合分析并且得到有希望的结果。最后,我们学习比作另外的非稀少的 MKL 的 EMKL 的理论优点。 展开更多
关键词 《自动化学报》 期刊 摘要 编辑部
在线阅读 下载PDF
Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
15
作者 Yoshihiro Kanno 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第5期260-265,共6页
Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected ... Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem. 展开更多
关键词 Alternating minimization regularized least-squares kernel method Manifold learning Data-driven computing
在线阅读 下载PDF
An l^(1) Regularized Method for Numerical Differentiation Using Empirical Eigenfunctions
16
作者 Junbin LI Renhong WANG Min XU 《Journal of Mathematical Research with Applications》 CSCD 2017年第4期496-504,共9页
We propose an ?~1 regularized method for numerical differentiation using empirical eigenfunctions. Compared with traditional methods for numerical differentiation, the output of our method can be considered directly ... We propose an ?~1 regularized method for numerical differentiation using empirical eigenfunctions. Compared with traditional methods for numerical differentiation, the output of our method can be considered directly as the derivative of the underlying function. Moreover,our method could produce sparse representations with respect to empirical eigenfunctions.Numerical results show that our method is quite effective. 展开更多
关键词 numerical differentiation empirical eigenfunctions ?~1 regularization mercer kernel
原文传递
Dunkl Multiplier Operators on a Class of Reproducing Kernel Hilbert Spaces
17
作者 Fethi SOLTANI 《Journal of Mathematical Research with Applications》 CSCD 2016年第6期689-702,共14页
We study some class of Dunkl multiplier operators;and we establish for them the Heisenberg-Pauli-Weyl uncertainty principle and the Donoho-Stark's uncertainty principle.For these operators we give also an application... We study some class of Dunkl multiplier operators;and we establish for them the Heisenberg-Pauli-Weyl uncertainty principle and the Donoho-Stark's uncertainty principle.For these operators we give also an application of the theory of reproducing kernels to the Tikhonov regularization on the Sobolev-Dunkl spaces. 展开更多
关键词 operators Heisenberg regularization kernel Stark reproducing measurable uncertainty boundedness satisfying
原文传递
基于核机器的加速失效时间模型及其应用
18
作者 荣耀华 王江慧 +1 位作者 程维虎 曹美雅 《统计研究》 CSSCI 北大核心 2024年第2期139-148,共10页
加速失效时间模型是一种应用广泛的生存分析模型。本文借助LASSO惩罚剔除冗余预测变量,构建基于核机器的加速失效时间模型,用以刻画预测变量与生存期间的复杂关系。此外,提出一种新的正则化Garrotized核机器估计方法,可以较好地刻画预... 加速失效时间模型是一种应用广泛的生存分析模型。本文借助LASSO惩罚剔除冗余预测变量,构建基于核机器的加速失效时间模型,用以刻画预测变量与生存期间的复杂关系。此外,提出一种新的正则化Garrotized核机器估计方法,可以较好地刻画预测变量与生存期潜在的非线性关系,实现非参数分量中预测变量间交互作用的自动建模,提升模型预测精度。模拟研究表明,与已有的代表性方法相比,本文提出的方法对生存期的预测精度更高,特别是在复杂关系情形下优势更为显著。最后,将该方法应用于胃癌数据分析,利用临床信息和基因表达预测生存期和风险评分。实证结果显示,该方法能为病例基于风险分层的临床精准诊疗方案设计提供有益的参考。 展开更多
关键词 加速失效时间模型 核机器 风险预测 正则化 再生核希尔伯特空间
在线阅读 下载PDF
基于图拉普拉斯正则化的PET图像核重建方法
19
作者 盛玉霞 孙坤 柴利 《电子学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深... 正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法 .设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法 . 展开更多
关键词 PET 图像重建 核方法 深度图像先验 图拉普拉斯正则化
在线阅读 下载PDF
一种求解低秩矩阵补全的修正加速近端梯度算法 被引量:1
20
作者 王川龙 张璐璇 《忻州师范学院学报》 2024年第2期1-4,共4页
设计适应大规模数据的快速算法是求解低秩矩阵补全的重点。文章改变了加速近端梯度算法的步长,对近似函数的近端最优点和上一迭代点增加了一个仿射组合。通过控制仿射系数,能够使得到的新迭代点有靠近原函数的趋势,进而能在保持算法精... 设计适应大规模数据的快速算法是求解低秩矩阵补全的重点。文章改变了加速近端梯度算法的步长,对近似函数的近端最优点和上一迭代点增加了一个仿射组合。通过控制仿射系数,能够使得到的新迭代点有靠近原函数的趋势,进而能在保持算法精度的同时提高算法效率。最后通过相应的数值实验证明了算法的有效性和稳定性。 展开更多
关键词 低秩矩阵补全 核范数正则化 最小二乘法 近端梯度算法 仿射组合
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部