To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling techno...To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.展开更多
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall...In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.展开更多
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while...Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the con...This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.展开更多
Simulation of phased array beams in dovetail and austenitic welds is conducted to optimize the setup of phased array ultrasonic testing(PAUT).To simulate the beam in such material with complex geometry or with chara...Simulation of phased array beams in dovetail and austenitic welds is conducted to optimize the setup of phased array ultrasonic testing(PAUT).To simulate the beam in such material with complex geometry or with characteristic of anisotropy and inhomogeneity, firstly,linear phased multi-Gaussian beam(LPMGB) models are introduced and discussed. Then,in the case of dovetail,wedge is designed to maximize the stable amplitude of the beam along the steering path;in the case of austenitic weld,modified focal law are developed to solve the problem of beam screwing and defocusing due to the material properties.To verify the effectiveness of the modified focal law,beam fields are calculated using LPMGB model in austenitic welds.展开更多
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho...High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro...This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.展开更多
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I...The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.展开更多
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul...Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(...In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.展开更多
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext...Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.展开更多
基金supported by the National Natural Science Foundation of China(Grants 52304001,52227804)State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum,Beijing(No.PRE/open-2310)。
文摘To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.
基金the support of EPIC - Energy Production Innovation Center, hosted by the University of Campinas (UNICAMP) and sponsored by Equinor Brazil and FAPESP - Sao Paulo Research Foundation (2021/04878- 7 and 2017/15736-3)financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior Brasil (CAPES) - Financing Code 001
文摘In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20242194)the National Natural Science Foundation of China(Grant Nos.52175251 and 52205268)+1 种基金the Industry Key Technology Research Fund Project of Northwestern Polytechnical University(Grant No.HYGJXM202318)the National Basic Scientific Research Program(Grant No.JCKY2021206B005).
文摘Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research under Grant LSE-ENIT-LR 11ES15funded in part by the PAQ-Collabora(PAR&I-Tk)program。
文摘This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.
基金supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST)(2006-01653)NSFC-NRF,and by the National Natural Science Foundation of China(NSFC)
文摘Simulation of phased array beams in dovetail and austenitic welds is conducted to optimize the setup of phased array ultrasonic testing(PAUT).To simulate the beam in such material with complex geometry or with characteristic of anisotropy and inhomogeneity, firstly,linear phased multi-Gaussian beam(LPMGB) models are introduced and discussed. Then,in the case of dovetail,wedge is designed to maximize the stable amplitude of the beam along the steering path;in the case of austenitic weld,modified focal law are developed to solve the problem of beam screwing and defocusing due to the material properties.To verify the effectiveness of the modified focal law,beam fields are calculated using LPMGB model in austenitic welds.
基金supported by National Natural Science Foundation of China(Grant No.51105040)Aeronautic Science Foundation of China(Grant No.2011ZA72003)Excellent Young Scholars Research Fund of Beijing Institute of Technology(Grant No.2010Y0102)
文摘High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
文摘This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.
基金supported by the National Natural Science Foundation of China(Nos.62272418,62102058)Basic Public Welfare Research Program of Zhejiang Province(No.LGG18E050011)the Major Open Project of Key Laboratory for Advanced Design and Intelligent Computing of the Ministry of Education under Grant ADIC2023ZD001,National Undergraduate Training Program on Innovation and Entrepreneurship(No.202410345054).
文摘The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.
基金upported by the National Natural Science Foundation of China(Grant No.62305184)the Major Key Project of Pengcheng Laboratory(Grant No.PCL2024A1)+1 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2023A1515012932)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.WDZC20220818100259004).
文摘Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-035Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2.
文摘In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.
基金the University of Transport Technology under grant number DTTD2022-12.
文摘Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.