期刊文献+
共找到10,641篇文章
< 1 2 250 >
每页显示 20 50 100
Model Transformer Evaluation of High-Permeability Grain-Oriented Electrical Steels 被引量:1
1
作者 Masayoshi Ishida, Seiji Okabe, Takeshi Imamura and Michiro Komatsubara (Kawasaki Steel Corporation, Kurashiki 712-8511, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期223-227,共5页
The dependence of transformer performance on the material properties was investigated using two laboratory-processed 0.23 mm thick grain-oriented electrical steels domain-refined with elec-trolytically etched grooves ... The dependence of transformer performance on the material properties was investigated using two laboratory-processed 0.23 mm thick grain-oriented electrical steels domain-refined with elec-trolytically etched grooves having different magnetic properties. The iron loss at 1.7 T, 50 Hz and the flux density at 800 A/m of material A were 0.73 W/kg and 1.89 T, respectively; and those of material B, 0.83 W/kg and 1.88 T. Model stacked and wound transformer core experiments using the tested materials exhibited performance well reflecting the material characteristics. In a three-phase stacked core with step-lap joints excited to 1.7 T, 50 Hz, the core loss, the exciting current and the noise level were 0.86 W/kg, 0.74 A and 52 dB, respectively, with material A; and 0.97 W/kg, 1.0 A and 54 dB with material B. The building factors for the core losses of the two materials were almost the same in both core configurations. The effect of higher harmonics on transformer performance was also investigated. 展开更多
关键词 model transformer Evaluation of High-Permeability Grain-Oriented Electrical Steels
在线阅读 下载PDF
A Model Transformation Approach for Detecting Distancing Violations in Weighted Graphs
2
作者 Ahmad F.Subahi 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期13-39,共27页
This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awirele... This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area. 展开更多
关键词 model-driven engineering(MDE) Internet-of-Things(IoTs) model transformation edge computing system design Neo4j graph databases
在线阅读 下载PDF
Model Transformation Using a Simplified Metamodel
3
作者 Hongming Liu Xiaoping Jia 《Journal of Software Engineering and Applications》 2010年第7期653-660,共8页
Model Driven Engineering (MDE) is a model-centric software development approach aims at improving the quality and productivity of software development processes. While some progresses in MDE have been made, there are ... Model Driven Engineering (MDE) is a model-centric software development approach aims at improving the quality and productivity of software development processes. While some progresses in MDE have been made, there are still many challenges in realizing the full benefits of model driven engineering. These challenges include incompleteness in existing modeling notations, inadequate in tools support, and the lack of effective model transformation mechanism. This paper provides a solution to build a template-based model transformation framework using a simplified metamode called Hierarchical Relational Metamodel (HRM). This framework supports MDE while providing the benefits of readability and rigorousness of meta-model definitions and transformation definitions. 展开更多
关键词 model DRIVEN ENGINEERING modeling METAmodelING model transformATION
在线阅读 下载PDF
On Utilizing Model Transformation for the Performance Analysis of Queueing Networks
4
作者 Issam Al-Azzoni 《Journal of Software Engineering and Applications》 2018年第9期435-457,共23页
In this paper, we present an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). The performance of QPNs can be analyzed using a powerful simulation engine, SimQPN, d... In this paper, we present an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). The performance of QPNs can be analyzed using a powerful simulation engine, SimQPN, designed to exploit the knowledge and behavior of QPNs to improve the efficiency of simulation. When QNMs are transformed into QPNs, their performance can be analyzed efficiently using SimQPN. To validate our approach, we apply it to analyze the performance of several queueing network models including a model of a database system. The evaluation results show that the performance analysis of the transformed QNMs has high accuracy and low overhead. In this context, model transformation enables the performance analysis of queueing networks using different ways that can be more efficient. 展开更多
关键词 model transformATION QUEUEING Networks QUEUEING PETRI NETS ATL
暂未订购
Model Transformation and Optimization of the Olympics Scheduling Problem
5
作者 JIANG Yong-Heng GU Qing-Hua +2 位作者 HUANG Bi-Qing CHEN Xi XIAO Tian-Yuan 《自动化学报》 EI CSCD 北大核心 2007年第4期409-413,共5页
安排问题的奥林匹克作为限制满足问题被建模,它被弄软最后的比赛的时间限制转变成一个抑制优化问题。分解方法论为抑制优化问题基于Lagrangian松驰被介绍。为双问题优化,有可变直径的亚坡度设计方法被学习。方法能收敛到全球性最佳的答... 安排问题的奥林匹克作为限制满足问题被建模,它被弄软最后的比赛的时间限制转变成一个抑制优化问题。分解方法论为抑制优化问题基于Lagrangian松驰被介绍。为双问题优化,有可变直径的亚坡度设计方法被学习。方法能收敛到全球性最佳的答案,效率被给。数字结果证明方法是有效的。 展开更多
关键词 最佳化设计 程序安排 拉格朗日 转换模型
在线阅读 下载PDF
基于LSTM-Transformer模型的突水条件下矿井涌水量预测
6
作者 李振华 姜雨菲 +1 位作者 杜锋 王文强 《河南理工大学学报(自然科学版)》 北大核心 2026年第1期77-85,共9页
目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基... 目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基础,提出LSTMTransformer模型。利用LSTM捕捉矿井涌水量的动态时序特征,通过Transformer的多头注意力机制分析含水层水位变化和矿井涌水量之间的复杂时序关联,构建水位动态变化驱动下的矿井涌水量精准预测框架。结果结果表明,LSTM-Transformer模型预测精度显著优于LSTM,CNN,Transformer和CNN-LSTM模型的,其均方根误差为20.91 m^(3)/h,平均绝对误差为16.08 m^(3)/h,平均绝对百分比误差为1.12%,且和单因素涌水量预测模型相比,水位-涌水量双因素预测模型预测结果更加稳定。结论LSTM-Transformer模型成功克服传统方法在捕捉复杂水文地质系统中水位-涌水量动态关联上的局限,为矿井涌水量动态预测提供可解释性强、鲁棒性好的解决方案,也为类似地质条件下矿井涌水量预测提供了新方法。 展开更多
关键词 涌水量预测 水位动态响应 LSTM-transformer耦合模型 时间序列预测 注意力机制 矿井安全生产
在线阅读 下载PDF
Millimeter-wave modeling based on transformer model for InP high electron mobility transistor
7
作者 ZHANG Ya-Xue ZHANG Ao GAO Jian-Jun 《红外与毫米波学报》 北大核心 2025年第4期534-539,共6页
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train... In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model. 展开更多
关键词 transformer model neural network high electron mobility transistor(HEMT) small signal model
在线阅读 下载PDF
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
8
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
Multi⁃Step Short⁃Term Traffic Flow Prediction of Urban Road Network Based on ISTA⁃Transformer Model
9
作者 Leyao Xiao Qian Chen 《Journal of Harbin Institute of Technology(New Series)》 2025年第6期1-14,共14页
Short⁃term traffic flow prediction plays a crucial role in the planning of intelligent transportation systems.Nowadays,there is a large amount of traffic flow data generated from the monitoring devices of urban road n... Short⁃term traffic flow prediction plays a crucial role in the planning of intelligent transportation systems.Nowadays,there is a large amount of traffic flow data generated from the monitoring devices of urban road networks,which contains road network traffic information with high application value.In this study,an improved spatio⁃temporal attention transformer model(ISTA⁃transformer model)is proposed to provide a more accurate method for predicting multi⁃step short⁃term traffic flow based on monitoring data.By embedding a temporal attention layer and a spatial attention layer in the model,the model learns the relationship between traffic flows at different time intervals and different geographic locations,and realizes more accurate multi⁃step short⁃time flow prediction.Finally,we validate the superiority of the model with monitoring data spanning 15 days from 620 monitoring points in Qingdao,China.In the four time steps of prediction,the MAPE(Mean Absolute Percentage Error)values of ISTA⁃transformers prediction results are 0.22,0.29,0.37,and 0.38,respectively,and its prediction accuracy is usually better than that of six baseline models(Transformer,GRU,CNN,LSTM,Seq2Seq and LightGBM),which indicates that the proposed model in this paper always has a better ability to explain the prediction results with the time steps in the multi⁃step prediction. 展开更多
关键词 urban road network traffic flow prediction spatio⁃temporal feature ISTA⁃transformer model
在线阅读 下载PDF
Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner
10
作者 Yue Hu Feng Tao +3 位作者 Jiajie Xu Wen-Jun Lan Jing Zhang Wei Lan 《Journal of Pharmaceutical Analysis》 2025年第6期1406-1408,共3页
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com... AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models. 展开更多
关键词 advanced algorithm diffusion generative models dcnn epitope targeting antibody design complementary determining regions complementary determining regions cdrs transformer models
在线阅读 下载PDF
The 3D-Geoformer for ENSO studies:a Transformer-based model with integrated gradient methods for enhanced explainability
11
作者 Lu ZHOU Rong-Hua ZHANG 《Journal of Oceanology and Limnology》 2025年第6期1688-1708,共21页
Deep learning(DL)has become a crucial technique for predicting the El Niño-Southern Oscillation(ENSO)and evaluating its predictability.While various DL-based models have been developed for ENSO predictions,many f... Deep learning(DL)has become a crucial technique for predicting the El Niño-Southern Oscillation(ENSO)and evaluating its predictability.While various DL-based models have been developed for ENSO predictions,many fail to capture the coherent multivariate evolution within the coupled ocean-atmosphere system of the tropical Pacific.To address this three-dimensional(3D)limitation and represent ENSO-related ocean-atmosphere interactions more accurately,a novel this 3D multivariate prediction model was proposed based on a Transformer architecture,which incorporates a spatiotemporal self-attention mechanism.This model,named 3D-Geoformer,offers several advantages,enabling accurate ENSO predictions up to one and a half years in advance.Furthermore,an integrated gradient method was introduced into the model to identify the sources of predictability for sea surface temperature(SST)variability in the eastern equatorial Pacific.Results reveal that the 3D-Geoformer effectively captures ENSO-related precursors during the evolution of ENSO events,particularly the thermocline feedback processes and ocean temperature anomaly pathways on and off the equator.By extending DL-based ENSO predictions from one-dimensional Niño time series to 3D multivariate fields,the 3D-Geoformer represents a significant advancement in ENSO prediction.This study provides details in the model formulation,analysis procedures,sensitivity experiments,and illustrative examples,offering practical guidance for the application of the model in ENSO research. 展开更多
关键词 transformer model 3 D-Geoformer El Niño-Southern Oscillation(ENSO)prediction explainable artificial intelligence(XAI) integrated gradient method
在线阅读 下载PDF
Test-driven verification/validation of model transformations
12
作者 Lfiszlo LENGYEL Hassan CHARAF 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第2期85-97,共13页
Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model... Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations. 展开更多
关键词 Graph rewriting based model transformations Verification/validation Test-driven verification
原文传递
Pragmatic model transformations for refactoring in Scilab/Xcos
13
作者 Umut Durak 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2016年第1期39-61,共23页
Model-Based Development has become an industry wide standard paradigm.As an open source alternative,Scilab/Xcos is being widely employed as a hybrid dynamic systems modeling tool.With the increasing efficiency in impl... Model-Based Development has become an industry wide standard paradigm.As an open source alternative,Scilab/Xcos is being widely employed as a hybrid dynamic systems modeling tool.With the increasing efficiency in implementation using graphical model development and code generation,the modeling and simulation community is struggling with assuring quality as well as maintainability and extendibility.Refactoring is defined as an evolutionary modernization activity where,most of the time,the structure of the artifact is changed to alter its quality characteristics,while keeping its behavior unchanged.It has been widely established as a technique for textual programming languages to improve the code structure and quality.While refactoring is also regarded as one of the key practices of model engineering,the methodologies and approaches for model refactoring are still under development.Architecture-Driven Modernization(ADM)has been introduced by the software engineering community as a model-based approach to software modernization,in which the implicit information that lies in software artifacts is extracted to models and model transformations are applied for modernization tasks.Regarding refactoring as a low level modernization task,the practices from ADM are adaptable.Accordingly,this paper proposes a model-based approach for model refactoring in order to come up with more efficient and effective model refactoring methodology that is accessible and extendable by modelers.Like other graphical modeling tools,Scilab/Xcos also possesses a formalized model specification conforming to its implicit metamodel.Rather than proposing another metamodel for knowledge extraction,this pragmatic approach proposes to conduct in place model-to-model transformations for refactoring employing the Scilab/Xcos model specification.To construct a structured model-based approach,the implicit Scilab/Xcos metamodel is explicitly presented utilizing ECORE as a meta-metamodel.Then a practical model transformation approach is established based on Scilab scripting.A Scilab toolset is provided to the modeler for in-place model-to-model transformations.Using a sample case study,it is demonstrated that proposed model transformation functions in Scilab provide a valuable refactoring tool. 展开更多
关键词 model refactoring Scilab/Xcos model engineering model transformations
原文传递
基于Transformer的时间序列预测方法综述 被引量:5
14
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
Generating native user interfaces for multiple devices by means of model transformation
15
作者 Ignacio MARIN Francisco ORTIN +1 位作者 German PEDROSA Javier RODRIGUEZ 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第12期995-1017,共23页
In the last years, the types of devices used to access information systems have notably increased using different operating systems, screen sizes, interaction mechanisms, and software features. This device fragmentati... In the last years, the types of devices used to access information systems have notably increased using different operating systems, screen sizes, interaction mechanisms, and software features. This device fragmentation is an important issue to tackle when developing native mobile service front-end applications. To address this issue,we propose the generation of native user interfaces(UIs) by means of model transformations, following the modelbased user interface(MBUI) paradigm. The resulting MBUI framework, called LIZARD, generates applications for multiple target platforms. LIZARD allows the definition of applications at a high level of abstraction, and applies model transformations to generate the target native UI considering the specific features of target platforms. The generated applications follow the UI design guidelines and the architectural and design patterns specified by the corresponding operating system manufacturer. The objective is not to generate generic applications following the lowest-common-denominator approach, but to follow the particular guidelines specified for each target device. We present an example application modeled in LIZARD, generating different UIs for Windows Phone and two types of Android devices(smartphones and tablets). 展开更多
关键词 model-to-model transformation Native user interfaces model-based user interfaces model-driven engineering
原文传递
基于局部时序建模与Transformer的机器人运动技能学习
16
作者 朱晓庆 南博睿 +5 位作者 宫婉儒 毕兰越 郑忻宜 朱晓宇 吴通 张川 《北京理工大学学报》 北大核心 2025年第9期968-978,共11页
为了提高机器人运动技能学习的效率和精度,提出一种基于序列特征处理的动作决策Transformer模型,命名为门控机制Transformer(gated mechanism Transformer,GMT).模型以GPT-2为核心,结合门控机制提取隐藏状态特征,通过自回归建模捕捉时... 为了提高机器人运动技能学习的效率和精度,提出一种基于序列特征处理的动作决策Transformer模型,命名为门控机制Transformer(gated mechanism Transformer,GMT).模型以GPT-2为核心,结合门控机制提取隐藏状态特征,通过自回归建模捕捉时间依赖关系,解决机器人运动数据中深层特征难以提取的问题.同时,利用参数共享策略细化预测特征完成动作推理.GMT在MuJoCo平台的三个机器人运动技能任务中进行了验证.实验结果表明,GMT在学习效率和精度方面较Decision Transformer最高提升28.5%.研究表明,GMT能够高效建模机器人运动序列特征,为机器人动作决策提供新的技术方案. 展开更多
关键词 机器人运动 局部时序建模 transformER 门控机制 自回归建模
在线阅读 下载PDF
基于转置Transformer模型的电化学储能自适应SOH估计方法 被引量:2
17
作者 李鹏 葛儒哲 +3 位作者 董存 孙树敏 张元欣 王士柏 《高电压技术》 北大核心 2025年第6期2945-2953,I0015,共10页
为了保障锂离子电池运行的可靠性和安全性,及时监测其健康状况,在Autoformer模型和iTransformer模型的基础上,结合线性回归模型,提出了一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。首先,从充电曲线中提取健康因... 为了保障锂离子电池运行的可靠性和安全性,及时监测其健康状况,在Autoformer模型和iTransformer模型的基础上,结合线性回归模型,提出了一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。首先,从充电曲线中提取健康因子。其次,将容量退化分解为退化趋势部分和容量再生部分,利用线性回归模型预测电池容量的退化趋势,利用转置Transformer模型估计电池容量再生部分,两部分组合以获得电池容量退化的估计结果。最后,利用注意力权重对模型赋予可解释性。研究结果表明:此方法在NASA锂电池老化数据集上的仿真实验中,预测误差明显小于其他时序预测模型,验证了所提方法的预测精确性与可靠性。论文为电池健康状态精确估计的进一步深入研究提供了参考。 展开更多
关键词 锂离子电池 健康状态 深度学习 注意力机制 转置transformer模型 可解释性
原文传递
基于小波变换增强位置编码Transformer的空域流量预测
18
作者 唐卫贞 刘波 +1 位作者 黄洲升 田齐齐 《现代电子技术》 北大核心 2025年第8期127-132,共6页
随着全球化进程的加快和航空技术的发展,对空中交通流量预测的精度要求也越来越高。为提高空中交通流量预测精度,减轻空中交通管制员的压力,提出一种增强位置编码的Transformer模型。利用小波变换对原始空域流量数据进行分析,通过信噪... 随着全球化进程的加快和航空技术的发展,对空中交通流量预测的精度要求也越来越高。为提高空中交通流量预测精度,减轻空中交通管制员的压力,提出一种增强位置编码的Transformer模型。利用小波变换对原始空域流量数据进行分析,通过信噪比选出性能最优的小波基函数,再进一步计算出小波系数并将其融入位置编码,以增强模型对时间序列数据的理解能力。实验结果表明,所提模型能够准确捕捉空中交通流量数据中的非平稳性和突变特征,其RMSE和MAPE评估指标较原始Transformer模型分别降低了29.9与2.9%,较LSTM模型分别降低了34.5与3.4%。该模型不仅提升了空域流量预测的准确性,也证实了小波变换在增强模型时间序列数据理解中的有效性,且为交通流量管理提供了一种新的技术方案。 展开更多
关键词 空域流量预测 增强位置编码 transformer模型 小波变换 LSTM模型 小波基函数
在线阅读 下载PDF
结合MoE与Transformer的生态翻译模型优化研究
19
作者 李玲 雷宏友 《自动化与仪器仪表》 2025年第4期178-181,186,共5页
生态翻译过程是译者进行适应与选择的过程,翻译原则是多维度的选择性适应以及适应性选择。虽然目前Transformer模型在生态翻译领域取得了显著的成果,然而在面对生态翻译中的复杂语义和多模态信息时,Transformer模型仍存在容量瓶颈和破... 生态翻译过程是译者进行适应与选择的过程,翻译原则是多维度的选择性适应以及适应性选择。虽然目前Transformer模型在生态翻译领域取得了显著的成果,然而在面对生态翻译中的复杂语义和多模态信息时,Transformer模型仍存在容量瓶颈和破坏模块化结构的问题。为此,研究提出结合专家混合与Transformer的生态翻译模型优化方法,通过引入专家混合机制,旨在提升模型对多样化输入的处理能力与翻译质量。研究结果表明,在Europarl数据集上,所提模型的翻译准确率总体保持在94%以上;在ParaCrawl数据集中,所提模型的准确率同样稳定在95%以上,且具有较强的稳定性,验证了此次研究的有效性。此次研究为生态翻译模型的优化提供了更广阔的思路和经验指导。 展开更多
关键词 生态翻译模型 transformER 专家混合 模型优化 神经机器翻译
原文传递
UAF-based integration of design and simulation model for system-of-systems
20
作者 FENG Yimin GE Ping +2 位作者 SHAO Yanli ZOU Qiang LIU Yusheng 《Journal of Systems Engineering and Electronics》 2025年第1期108-126,共19页
Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses si... Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process. 展开更多
关键词 model-based systems engineering unified architecture framework(UAF) system-of-systems engineering model transformation SIMULATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部