Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes...Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the...The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the high complexity of time and less information about the 3D model. The research is extended and process card is treated as part of the 3D reconstruction. A set of process data is a superset of 2D engineering drawings set. The set comprises process drawings and process steps, and shows a sequencing and asymptotic course that a part is made from roughcast blank to final product. According to these characteristics, the object to be reconstructed is translated from the complicated engineering drawings into a series of much simpler process drawings. With the plentiful process information added for reconstruction, the disturbances such as irrelevant graph, symbol and label, etc. can be avoided. And more, the form change of both neighbor process drawings is so little that the engineering drawings interpretation has no difficulty; in addition, the abnormal solution and multi-solution can be avoided during reconstruction, and the problems of being applicable to more objects is solved ultimately. Therefore, the utility method for 3D reconstruction model will be possible. On the other hand, the feature information in process cards is provided for reconstruction model. Focusing on process cards, the feasibility and requirements of Working Procedure Model reconstruction is analyzed, and the method to apply and implement the Natural Language Understanding into the 3D reconstruction is studied. The method of asymptotic approximation product was proposed, by which a 3D process model can be constructed automatically and intelligently. The process model not only includes the information about parts characters, but also can deliver the information of design, process and engineering to the downstream applications.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated ...A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.展开更多
Purpose: To evaluate the quality of three-dimensional (3D) CT angiography images of the abdominal viscera with small focal spot, low tube voltage, and iterative model reconstruction technique (IMR). Materials and Meth...Purpose: To evaluate the quality of three-dimensional (3D) CT angiography images of the abdominal viscera with small focal spot, low tube voltage, and iterative model reconstruction technique (IMR). Materials and Methods: Seven patients with suspected disease of the pancreatobiliary system had undergone CT with high-quality CTA protocol in the present study. There were 5 men and 2 women, ranging in age from 52 to 80 years (mean: 64 years). Results: Depiction of abdominal small artery, small portal vein was possible in all cases. In two cases that we were able to compare, it was superior to standard CTA in small vascular depiction in CTA made clearly in high quality protocol. Conclusions: Although the use of small focal spot, low tube voltage, and IMR can produce higher-quality images of abdominal vessels than standard CTA, this improvement is not significant at elevated radiation doses.展开更多
Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is emp...Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.展开更多
This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model ...This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.展开更多
This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are ob...This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications.展开更多
Based on the 500-hPa geopotential height field series of T106 numerical forecast products, by empirical orthogonal function (EOF) time-space separation, and on the hypotheses of EOF space-models being stable, the EO...Based on the 500-hPa geopotential height field series of T106 numerical forecast products, by empirical orthogonal function (EOF) time-space separation, and on the hypotheses of EOF space-models being stable, the EOF time coefficient series were taken as dynamical statistic model variables. The dynamic system reconstruction idea and genetic algorithm were introduced to make the dynamical model parameters optimized, and a nonlinear dynamic statistic model of EOF separating time coefficient series was established. By the model time integral and EOF time-space reconstruction, a medium/long-range forecast of subtropical high was carried out. The results show that the dynamical model forecast and T106 numerical forecast were approximately similar in the short-range forecast (≤5 days), but in the medium/long-range forecast (≥5 days), the forecast results of dynamical model was superior to that of T106 numerical products. A new method and idea were presented for diagnosing and forecasting complicated weathers such as subtropical high, and showed a better application outlook.展开更多
This paper presents a method to reconstruct symmetric geometric models from point cloud with inherent symmetric structure. Symmetry types commonly found in engineering parts, i.e., translational, reflectional and rota...This paper presents a method to reconstruct symmetric geometric models from point cloud with inherent symmetric structure. Symmetry types commonly found in engineering parts, i.e., translational, reflectional and rotational symmetries are considered. The reconstruction problem is formulated as a constrained optimization, where the objective function is the sum of squared distances of points to the model, and constraints are enforced to keep geometric relationships in the model. First, the explicit representations of symmetric models are presented. Then, by using the concept of parameterized points (where the coor-dinate components are represented as functions rather than constants), the distances of points to symmetric models are deduced. With these distance functions, symmetry information, for both 2D and 3D models, is uniformly represented in the process of reconstruction. The constrained optimization problem is solved by a standard nonlinear optimization method. Owing to the explicit representation of symmetry information, the computational complexity of our method is reduced greatly. Finally, examples are given to demonstrate the application of the proposed method.展开更多
The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial...The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro computed lomography(CT) scan can well describe internal microstruetures of composites. Therefore, a reconstructed model is developed based on mireo-CT, by a series of prodcedures including extrac tlng components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS. the presented reconstructed FE model is superior in terms of high mesh quality and eontrollable mesh cluantity. The precision of the model is verified by experiment.展开更多
Representation of roughness is introduced and the rationality of applying thephysics-based model in RE is analyzed at first. Then the scattering theory of electromagnetic waveis simplified and deduced to a physics-bas...Representation of roughness is introduced and the rationality of applying thephysics-based model in RE is analyzed at first. Then the scattering theory of electromagnetic waveis simplified and deduced to a physics-based model according to the characteristics of the surfaceto be reconstructed in RE. At last, the intensity diagrams of reflected field distribution areprovided to prove the feasibility of the presented model and some spheres are rendered with thismodel.展开更多
The biomechanical relationship between the articular cartilage defect and knee osteoarthritis (OA) has not been clearly defined. This study presents a 3D knee finite element model (FEM) to determine the effect of cart...The biomechanical relationship between the articular cartilage defect and knee osteoarthritis (OA) has not been clearly defined. This study presents a 3D knee finite element model (FEM) to determine the effect of cartilage defects on the stress distribution around the defect rim. The complete knee FEM, which includes bones, articular cartilages, menisci and ligaments, is developed from computed tomography and magnetic resonance images. This FEM then is validated and used to simulate femoral cartilage defects. Based on the obtained results, it is confirmed that the 3D knee FEM is reconstructed with high-fidelity level and can faithfully predict the knee contact behavior. Cartilage defects drastically affect the stress distribution on articular cartilages. When the defect size was smaller than 1.00cm2, the stress elevation and redistribution were found undistinguishable. However, significant stress elevation and redistribution were detected due to the large defect sizes ( 1.00cm2). This alteration of stress distribution has important implications relating to the progression of cartilage defect to OA in the human knee joint.展开更多
In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2...In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2 could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.展开更多
Cosmetic safety evaluation employs a series of toxicological tests, on both qualitative and quantitative levels, to assess the potential risks for the daily use of selected cosmetic ingredients and final products. Tra...Cosmetic safety evaluation employs a series of toxicological tests, on both qualitative and quantitative levels, to assess the potential risks for the daily use of selected cosmetic ingredients and final products. Traditionally, safety evaluation of cosmetics uses animal tests. With the development of in vitro science and the 3R (Reduction, Replacement and Refinement) principle, three-dimensional reconstructed human epidermis (3D-RHE) models have been developed and widely applied in cosmetic safety evaluation. Reconstructed human skin models possess anatomy and metabolism biology similar to real human tissue. This paper reviews the current application of 3D-RHE models in the safety evaluation of skin irritation, eye irritation, phototoxicity and genotoxicity potential of cosmetic ingredients/formulas. The advantages and disadvantages of using skin models are also discussed, and comments and suggestions are given for its future development.展开更多
An approach for reconstructing wireframe models of curvilinear objects f rom three orthographic views is discussed in this paper. The method for generati ng 3D conic edges from 2D projection conic curves is emphasized...An approach for reconstructing wireframe models of curvilinear objects f rom three orthographic views is discussed in this paper. The method for generati ng 3D conic edges from 2D projection conic curves is emphasized especially, whic h is the pivotal work for reconstructing curvilinear objects from three orthogra phic views. In order to generate 3D conic edges, a five-point method is firstly utilized to obtain the algebraic representations of all 2D-projection curves i n each view, and then all algebraic forms are converted to the corresponding geo metric forms analytically. Thus the locus of a 3D conic edge can be derived from the geometric forms of the relevant conic curves in three views. Finally, the w ireframe model is created after eliminating all redundant elements generated in previous reconstruction process. The approach extends the range of objects to be reconstructed and imposes no restriction on the axis of the quadric surface.展开更多
The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterat...The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.展开更多
文摘Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
文摘The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the high complexity of time and less information about the 3D model. The research is extended and process card is treated as part of the 3D reconstruction. A set of process data is a superset of 2D engineering drawings set. The set comprises process drawings and process steps, and shows a sequencing and asymptotic course that a part is made from roughcast blank to final product. According to these characteristics, the object to be reconstructed is translated from the complicated engineering drawings into a series of much simpler process drawings. With the plentiful process information added for reconstruction, the disturbances such as irrelevant graph, symbol and label, etc. can be avoided. And more, the form change of both neighbor process drawings is so little that the engineering drawings interpretation has no difficulty; in addition, the abnormal solution and multi-solution can be avoided during reconstruction, and the problems of being applicable to more objects is solved ultimately. Therefore, the utility method for 3D reconstruction model will be possible. On the other hand, the feature information in process cards is provided for reconstruction model. Focusing on process cards, the feasibility and requirements of Working Procedure Model reconstruction is analyzed, and the method to apply and implement the Natural Language Understanding into the 3D reconstruction is studied. The method of asymptotic approximation product was proposed, by which a 3D process model can be constructed automatically and intelligently. The process model not only includes the information about parts characters, but also can deliver the information of design, process and engineering to the downstream applications.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
文摘A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.
文摘Purpose: To evaluate the quality of three-dimensional (3D) CT angiography images of the abdominal viscera with small focal spot, low tube voltage, and iterative model reconstruction technique (IMR). Materials and Methods: Seven patients with suspected disease of the pancreatobiliary system had undergone CT with high-quality CTA protocol in the present study. There were 5 men and 2 women, ranging in age from 52 to 80 years (mean: 64 years). Results: Depiction of abdominal small artery, small portal vein was possible in all cases. In two cases that we were able to compare, it was superior to standard CTA in small vascular depiction in CTA made clearly in high quality protocol. Conclusions: Although the use of small focal spot, low tube voltage, and IMR can produce higher-quality images of abdominal vessels than standard CTA, this improvement is not significant at elevated radiation doses.
基金Supported by National Natural Science Foundation of China(No.61272286)
文摘Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.
基金This research was supported by the National Nature Science Foundation of China under Grant No.60473024 the Nature Science Foundation of Zhejiang Province of China under Grant No.Y104341 and z105391.
文摘This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.
基金supported by the Key Research and DevelopmentPlan in Shanxi Province of China(No.201803D421045)the Natural Science Foundation of Shanxi Province(No.2021-0302-123104)。
文摘This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications.
基金the National Natural Science Foundation of China(40375019)the Tropical Marine and Meteorological Science Foundation(200609).
文摘Based on the 500-hPa geopotential height field series of T106 numerical forecast products, by empirical orthogonal function (EOF) time-space separation, and on the hypotheses of EOF space-models being stable, the EOF time coefficient series were taken as dynamical statistic model variables. The dynamic system reconstruction idea and genetic algorithm were introduced to make the dynamical model parameters optimized, and a nonlinear dynamic statistic model of EOF separating time coefficient series was established. By the model time integral and EOF time-space reconstruction, a medium/long-range forecast of subtropical high was carried out. The results show that the dynamical model forecast and T106 numerical forecast were approximately similar in the short-range forecast (≤5 days), but in the medium/long-range forecast (≥5 days), the forecast results of dynamical model was superior to that of T106 numerical products. A new method and idea were presented for diagnosing and forecasting complicated weathers such as subtropical high, and showed a better application outlook.
基金the National Natural Science Foundation of China (No. 50575098)China Postdoctoral Science Foundation (No. 20070421176)
文摘This paper presents a method to reconstruct symmetric geometric models from point cloud with inherent symmetric structure. Symmetry types commonly found in engineering parts, i.e., translational, reflectional and rotational symmetries are considered. The reconstruction problem is formulated as a constrained optimization, where the objective function is the sum of squared distances of points to the model, and constraints are enforced to keep geometric relationships in the model. First, the explicit representations of symmetric models are presented. Then, by using the concept of parameterized points (where the coor-dinate components are represented as functions rather than constants), the distances of points to symmetric models are deduced. With these distance functions, symmetry information, for both 2D and 3D models, is uniformly represented in the process of reconstruction. The constrained optimization problem is solved by a standard nonlinear optimization method. Owing to the explicit representation of symmetry information, the computational complexity of our method is reduced greatly. Finally, examples are given to demonstrate the application of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos.11272147,10772078)the Aviation Science Foundation (No.2013ZF52074)+1 种基金the State Key Laboratory of Mechanical Structural Mechanics and Control (No.0214G02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro computed lomography(CT) scan can well describe internal microstruetures of composites. Therefore, a reconstructed model is developed based on mireo-CT, by a series of prodcedures including extrac tlng components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS. the presented reconstructed FE model is superior in terms of high mesh quality and eontrollable mesh cluantity. The precision of the model is verified by experiment.
文摘Representation of roughness is introduced and the rationality of applying thephysics-based model in RE is analyzed at first. Then the scattering theory of electromagnetic waveis simplified and deduced to a physics-based model according to the characteristics of the surfaceto be reconstructed in RE. At last, the intensity diagrams of reflected field distribution areprovided to prove the feasibility of the presented model and some spheres are rendered with thismodel.
基金the National Natural Science Foundation of China (No. 81071235)the Medicine and Engineering Interdisciplinary Fund of Shanghai Jiaotong University (No. YG2010MS26)
文摘The biomechanical relationship between the articular cartilage defect and knee osteoarthritis (OA) has not been clearly defined. This study presents a 3D knee finite element model (FEM) to determine the effect of cartilage defects on the stress distribution around the defect rim. The complete knee FEM, which includes bones, articular cartilages, menisci and ligaments, is developed from computed tomography and magnetic resonance images. This FEM then is validated and used to simulate femoral cartilage defects. Based on the obtained results, it is confirmed that the 3D knee FEM is reconstructed with high-fidelity level and can faithfully predict the knee contact behavior. Cartilage defects drastically affect the stress distribution on articular cartilages. When the defect size was smaller than 1.00cm2, the stress elevation and redistribution were found undistinguishable. However, significant stress elevation and redistribution were detected due to the large defect sizes ( 1.00cm2). This alteration of stress distribution has important implications relating to the progression of cartilage defect to OA in the human knee joint.
基金This study is sponosored by National Natural Science Foundation of China.
文摘In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2 could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.
文摘Cosmetic safety evaluation employs a series of toxicological tests, on both qualitative and quantitative levels, to assess the potential risks for the daily use of selected cosmetic ingredients and final products. Traditionally, safety evaluation of cosmetics uses animal tests. With the development of in vitro science and the 3R (Reduction, Replacement and Refinement) principle, three-dimensional reconstructed human epidermis (3D-RHE) models have been developed and widely applied in cosmetic safety evaluation. Reconstructed human skin models possess anatomy and metabolism biology similar to real human tissue. This paper reviews the current application of 3D-RHE models in the safety evaluation of skin irritation, eye irritation, phototoxicity and genotoxicity potential of cosmetic ingredients/formulas. The advantages and disadvantages of using skin models are also discussed, and comments and suggestions are given for its future development.
文摘An approach for reconstructing wireframe models of curvilinear objects f rom three orthographic views is discussed in this paper. The method for generati ng 3D conic edges from 2D projection conic curves is emphasized especially, whic h is the pivotal work for reconstructing curvilinear objects from three orthogra phic views. In order to generate 3D conic edges, a five-point method is firstly utilized to obtain the algebraic representations of all 2D-projection curves i n each view, and then all algebraic forms are converted to the corresponding geo metric forms analytically. Thus the locus of a 3D conic edge can be derived from the geometric forms of the relevant conic curves in three views. Finally, the w ireframe model is created after eliminating all redundant elements generated in previous reconstruction process. The approach extends the range of objects to be reconstructed and imposes no restriction on the axis of the quadric surface.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natural Science Foundation of China(Grant No.61372172)
文摘The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.