The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of ...The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.展开更多
A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single mode...A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.展开更多
In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, the...In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.展开更多
According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the mo...According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the modified quadratic polynomial model-H, were used to fit the records of litter size in Jiangquhai sows. From the viewpoint of statistics and biological significance, the modified quadratic polynomial mod- el-I was found to be the optimum model. A single traitanimal model and DFREML procedures were further used to estimate the heritability values of optimum model parameters. The results show that the heritabili- ty values for the coefficients A and B and the herita- bility value for the acme of the model pure quadric curve are larger than the heritability value for the litter size. This suggests that selection for model parameters may be more effective than direct selection for litter size.展开更多
A point source seismological model is used in this study to model the available strong motion accelerograms recorded by 17 events and to calculate three seismological model parameters, the source, path, and quality fa...A point source seismological model is used in this study to model the available strong motion accelerograms recorded by 17 events and to calculate three seismological model parameters, the source, path, and quality factor. Due to the paucity of recorded events, this is the first time these model parameters have been obtained for the northeastern and its surrounding region of India. The quality factors of the horizontal and vertical components of recorded events with corresponding standard deviations are QH(f) = 188.55f0.94, σ-1 value (25, 0.025) and Qv(f) = 169.76f0.93,σs value (20, 0.03), respectively. The source parameter stress drop values (△σ-) vary within 124 180 bars for the subduction region and 80 169 bars for the active region. The Kappa factors for the horizontal and vertical components of recorded events on the soft rock site are 0.06 and 0.05, respectively. These seismological model parameters obtained in this study will be useful for future work deriving a ground motion attenuation relation based on a spectral model. Finally, these results are useful for seismic hazard assessment of a region having sparsely recorded events.展开更多
Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Dopple...Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.展开更多
Precise states estimation for the lithium-ion battery is one of the fundamental tasks in the battery management system(BMS),where building an accurate battery model is the first step in model-based estimation algorith...Precise states estimation for the lithium-ion battery is one of the fundamental tasks in the battery management system(BMS),where building an accurate battery model is the first step in model-based estimation algorithms.To date,although the comparative studies on different battery models have been performed intensively,little attention is paid to the comparison among different online parameters identification methods regarding model accuracy,robustness ability,adaptability to the different battery operating conditions and computation cost.In this paper,based on the Thevenin model,the three most widely used online parameters identification methods,including extended Kalman filter(EKF),particle swarm optimization(PSO),and recursive least square(RLS),are evaluated comprehensively under static and dynamic tests.It is worth noting that,although the built model’s terminal voltage may well follow a measured curve,these identified model parameters may significantly out of reasonable range,which means that the error between measured and predicted terminal voltage cannot be seen as a gist to determine which model is the most accurate.To evaluate model accuracy more rigorously,battery state-of-charge(SOC)is further estimated based on identified model parameters under static and dynamic tests.The SOC prediction results show that EKF and RLS algorithms are more suitable to be used for online model parameters identification under static and dynamic tests,respectively.Moreover,the random offset is added into originally measured data to verify the robustness ability of different methods,whose results indicate EKF and RLS have more satisfactory ability against imprecisely sampled data under static and dynamic tests,respectively.Considering model accuracy,robustness ability,adaptability to the different battery operating conditions and computation cost simultaneously,EKF is recommended to be adopted to establish battery model in real application among these three most widely used methods.展开更多
The objectives of this study were to(1)simulate streamflow,total sediment(TS),total phosphorus(TP),and total nitrogen(TN)loads;and(2)use the sequential uncertainty fitting(SUFI-2)algorithm to quantify the model parame...The objectives of this study were to(1)simulate streamflow,total sediment(TS),total phosphorus(TP),and total nitrogen(TN)loads;and(2)use the sequential uncertainty fitting(SUFI-2)algorithm to quantify the model parameter sensitivity and uncertainty in simulating streamflow,TS,TP,and TN loads using Soil and Water Assessment(SWAT)model in Big Sunflower River watershed(BSRW).The model was calibrated from 1996 to 2003 and validated from 2004 to 2010 for daily streamflow,TS load,TP load,and TN load.The model performed well simulating daily streamflow(R^2=0.58-0.75,NSE=0.47-0.75),TS load(R^2=0.50-0.72,NSE=0.47-0.66),and TP load(R^2=0.79-0.82,NSE=0.73-0.77),and the model performance was slightly low for TN load(R^2=0.13-0.31,NSE=0.09 to 0.07).This study determined that parameter uncertainty was greatest for simulating TN load(p-factor=0.48,r-factor=1.25)and that parameter uncertainty was lowest for simulating streamflow(p-factor=0.70-0.78,r-factor=1.18-1.19).Output uncertainty was much greater during peak streamflow and peak pollutant loads compared to periods of low streamflow and low pollutant loads.The sensitivity analyses found that streamflow was most sensitive to Manning’s roughness coefficient for the main channel(CH_N2),TS load was most sensitive the peak rate adjustment factor for sediment routing in the tributary channels(ADJ_PKR),TP load was most sensitive to the Phosphorus enrichment ratio for loading with sediments(ERORGP),and TN load was most sensitive to the denitrification exponential rate coefficient(CDN).Uncertainty was found to be much greater during peak streamflow and peak pollutant loads compared to periods of low streamflow and low pollutant loads.展开更多
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s...To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.展开更多
This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli ...This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.展开更多
In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through...In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.展开更多
This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and...This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory,according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the reqression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.展开更多
In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model e...In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model estimator in the Random Parameters Logit (RPL) model. The results of our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the fully correlated RPL model estimator and provide more accurate information on the share of population putting a positive or negative value on the alternative attributes than the fully correlated RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and positive-part Stein-like estimators are closer to the true value and have smaller standard errors than those with fully correlated RPL model estimator.展开更多
Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data ...Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data and the unreliability of forecasts. To obtain foundational data for sequence parameters of the land-sea adjacent zone and establish a reliable and operational aftershock forecasting framework, we combined the initial sequence parameters extracted from envelope functions and incorporated small-earthquake information into our model to construct a Bayesian algorithm for the early postearthquake stage. We performed parameter fitting and early postearthquake aftershock occurrence rate forecasting and effectiveness evaluation for 36 earthquake sequences with M ≥ 4.0 in the Bohai Rim region since 2010. According to the results, during the early stage after the mainshock, earthquake sequence parameters exhibited relatively drastic fl uctuations with signifi cant errors. The integration of prior information can mitigate the intensity of these changes and reduce errors. The initial and stable sequence parameters generally display advantageous distribution characteristics, with each parameter’s distribution being relatively concentrated and showing good symmetry and remarkable consistency. The sequence parameter p-values were relatively small, which indicates the comparatively slow attenuation of signifi cant earthquake events in the Bohai Rim region. A certain positive correlation was observed between earthquake sequence parameters b and p. However, sequence parameters are unrelated to the mainshock magnitude, which implies that their statistical characteristics and trends are universal. The Bayesian algorithm revealed a good forecasting capability for aftershocks in the early postearthquake period (2 h) in the Bohai Rim region, with an overall forecasting effi cacy rate of 76.39%. The proportion of “too low” failures exceeded that of “too high” failures, and the number of forecasting failures for the next three days was greater than that for the next day.展开更多
Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensit...Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nio events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nio events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution,the influence of void defects caused by the casting process on cast steel nodes mechanical properties was studied.Firstl...Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution,the influence of void defects caused by the casting process on cast steel nodes mechanical properties was studied.Firstly,based on the GTN damage model,the model s parameter combination of G20Mn5N cast steel was given.Then,the mechanical properties of cast steel nodes were evaluated using the GTN damage model in ABAQUS software,and the influence of model parameters on the failure results was investigated.The results show that the cast steel node considering the GTN damage model fails under 1.93 times of the load.The bearing capacity is lower than that of the bilinear model,and the failure speed is faster.Changes in model parameters will cause a shift in the failure critical point.Meanwhile,the plastic strain index affects the void volume fractions,which shows different variation laws under uniaxial tensile and cyclic loads.Therefore,the GTN damage model establishes the relationship between the micro-defects and macro-mechanical properties of materials,which can better simulate the failure results of structures.展开更多
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma...A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license展开更多
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>...This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.展开更多
基金supported by the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB 2024ZR03)the National Natural Science Foundation of China(No.42407248)+2 种基金the Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC-[2023]-YB066)the Key Laboratory of Smart Earth(No.KF2023YB04-02)the Fundamental Research Funds for the Central Universities。
文摘The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.
基金supported by Innovation Project of Chinese Academy of Sciences
文摘A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.
基金supported partially by the Important National Science&Technology Specific Projects,China(Grant No.2013ZX02503003)
文摘In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.
文摘According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the modified quadratic polynomial model-H, were used to fit the records of litter size in Jiangquhai sows. From the viewpoint of statistics and biological significance, the modified quadratic polynomial mod- el-I was found to be the optimum model. A single traitanimal model and DFREML procedures were further used to estimate the heritability values of optimum model parameters. The results show that the heritabili- ty values for the coefficients A and B and the herita- bility value for the acme of the model pure quadric curve are larger than the heritability value for the litter size. This suggests that selection for model parameters may be more effective than direct selection for litter size.
文摘A point source seismological model is used in this study to model the available strong motion accelerograms recorded by 17 events and to calculate three seismological model parameters, the source, path, and quality factor. Due to the paucity of recorded events, this is the first time these model parameters have been obtained for the northeastern and its surrounding region of India. The quality factors of the horizontal and vertical components of recorded events with corresponding standard deviations are QH(f) = 188.55f0.94, σ-1 value (25, 0.025) and Qv(f) = 169.76f0.93,σs value (20, 0.03), respectively. The source parameter stress drop values (△σ-) vary within 124 180 bars for the subduction region and 80 169 bars for the active region. The Kappa factors for the horizontal and vertical components of recorded events on the soft rock site are 0.06 and 0.05, respectively. These seismological model parameters obtained in this study will be useful for future work deriving a ground motion attenuation relation based on a spectral model. Finally, these results are useful for seismic hazard assessment of a region having sparsely recorded events.
基金supported by the National Natural Science Foundation of China (No.U2133210).
文摘Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.
基金supported by the State Grid Company Science and Technology Project(Grant No.5230HQ19000J).
文摘Precise states estimation for the lithium-ion battery is one of the fundamental tasks in the battery management system(BMS),where building an accurate battery model is the first step in model-based estimation algorithms.To date,although the comparative studies on different battery models have been performed intensively,little attention is paid to the comparison among different online parameters identification methods regarding model accuracy,robustness ability,adaptability to the different battery operating conditions and computation cost.In this paper,based on the Thevenin model,the three most widely used online parameters identification methods,including extended Kalman filter(EKF),particle swarm optimization(PSO),and recursive least square(RLS),are evaluated comprehensively under static and dynamic tests.It is worth noting that,although the built model’s terminal voltage may well follow a measured curve,these identified model parameters may significantly out of reasonable range,which means that the error between measured and predicted terminal voltage cannot be seen as a gist to determine which model is the most accurate.To evaluate model accuracy more rigorously,battery state-of-charge(SOC)is further estimated based on identified model parameters under static and dynamic tests.The SOC prediction results show that EKF and RLS algorithms are more suitable to be used for online model parameters identification under static and dynamic tests,respectively.Moreover,the random offset is added into originally measured data to verify the robustness ability of different methods,whose results indicate EKF and RLS have more satisfactory ability against imprecisely sampled data under static and dynamic tests,respectively.Considering model accuracy,robustness ability,adaptability to the different battery operating conditions and computation cost simultaneously,EKF is recommended to be adopted to establish battery model in real application among these three most widely used methods.
文摘The objectives of this study were to(1)simulate streamflow,total sediment(TS),total phosphorus(TP),and total nitrogen(TN)loads;and(2)use the sequential uncertainty fitting(SUFI-2)algorithm to quantify the model parameter sensitivity and uncertainty in simulating streamflow,TS,TP,and TN loads using Soil and Water Assessment(SWAT)model in Big Sunflower River watershed(BSRW).The model was calibrated from 1996 to 2003 and validated from 2004 to 2010 for daily streamflow,TS load,TP load,and TN load.The model performed well simulating daily streamflow(R^2=0.58-0.75,NSE=0.47-0.75),TS load(R^2=0.50-0.72,NSE=0.47-0.66),and TP load(R^2=0.79-0.82,NSE=0.73-0.77),and the model performance was slightly low for TN load(R^2=0.13-0.31,NSE=0.09 to 0.07).This study determined that parameter uncertainty was greatest for simulating TN load(p-factor=0.48,r-factor=1.25)and that parameter uncertainty was lowest for simulating streamflow(p-factor=0.70-0.78,r-factor=1.18-1.19).Output uncertainty was much greater during peak streamflow and peak pollutant loads compared to periods of low streamflow and low pollutant loads.The sensitivity analyses found that streamflow was most sensitive to Manning’s roughness coefficient for the main channel(CH_N2),TS load was most sensitive the peak rate adjustment factor for sediment routing in the tributary channels(ADJ_PKR),TP load was most sensitive to the Phosphorus enrichment ratio for loading with sediments(ERORGP),and TN load was most sensitive to the denitrification exponential rate coefficient(CDN).Uncertainty was found to be much greater during peak streamflow and peak pollutant loads compared to periods of low streamflow and low pollutant loads.
基金funding from the Paul ScherrerInstitute,Switzerland through the NES/GFA-ABE Cross Project。
文摘To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.
文摘This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.
基金Supported by the National Natural Science Foundation of China(10272109)
文摘In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.
文摘This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory,according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the reqression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.
文摘In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model estimator in the Random Parameters Logit (RPL) model. The results of our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the fully correlated RPL model estimator and provide more accurate information on the share of population putting a positive or negative value on the alternative attributes than the fully correlated RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and positive-part Stein-like estimators are closer to the true value and have smaller standard errors than those with fully correlated RPL model estimator.
基金supported by the Natural Science Foundation of Tianjin (No. 22JCQNJC01070)the National Natural Science Foundation of China (No. 42404079)the Key Project of Tianjin Earthquake Agency (No. Zd202402)。
文摘Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data and the unreliability of forecasts. To obtain foundational data for sequence parameters of the land-sea adjacent zone and establish a reliable and operational aftershock forecasting framework, we combined the initial sequence parameters extracted from envelope functions and incorporated small-earthquake information into our model to construct a Bayesian algorithm for the early postearthquake stage. We performed parameter fitting and early postearthquake aftershock occurrence rate forecasting and effectiveness evaluation for 36 earthquake sequences with M ≥ 4.0 in the Bohai Rim region since 2010. According to the results, during the early stage after the mainshock, earthquake sequence parameters exhibited relatively drastic fl uctuations with signifi cant errors. The integration of prior information can mitigate the intensity of these changes and reduce errors. The initial and stable sequence parameters generally display advantageous distribution characteristics, with each parameter’s distribution being relatively concentrated and showing good symmetry and remarkable consistency. The sequence parameter p-values were relatively small, which indicates the comparatively slow attenuation of signifi cant earthquake events in the Bohai Rim region. A certain positive correlation was observed between earthquake sequence parameters b and p. However, sequence parameters are unrelated to the mainshock magnitude, which implies that their statistical characteristics and trends are universal. The Bayesian algorithm revealed a good forecasting capability for aftershocks in the early postearthquake period (2 h) in the Bohai Rim region, with an overall forecasting effi cacy rate of 76.39%. The proportion of “too low” failures exceeded that of “too high” failures, and the number of forecasting failures for the next three days was greater than that for the next day.
基金sponsored by the Knowl-edge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-QN203)the National Basic Re-search Program of China (No. 2007CB411800)the GYHY200906009 of the China Meteorological Administra-tion
文摘Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nio events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nio events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
基金The National Key Research and Development Program of China(No.2017YFC0805100)the National Natural Science Foundation of China(No.51578137)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
文摘Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution,the influence of void defects caused by the casting process on cast steel nodes mechanical properties was studied.Firstly,based on the GTN damage model,the model s parameter combination of G20Mn5N cast steel was given.Then,the mechanical properties of cast steel nodes were evaluated using the GTN damage model in ABAQUS software,and the influence of model parameters on the failure results was investigated.The results show that the cast steel node considering the GTN damage model fails under 1.93 times of the load.The bearing capacity is lower than that of the bilinear model,and the failure speed is faster.Changes in model parameters will cause a shift in the failure critical point.Meanwhile,the plastic strain index affects the void volume fractions,which shows different variation laws under uniaxial tensile and cyclic loads.Therefore,the GTN damage model establishes the relationship between the micro-defects and macro-mechanical properties of materials,which can better simulate the failure results of structures.
文摘A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license
文摘This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.