A new 22-element small signal equivalent circuit model for the AlGaN/G N high electron mobility transistor(HEMT) is presented. Compared with the traditional equivalent circuit model, the gate forward and breakdown c...A new 22-element small signal equivalent circuit model for the AlGaN/G N high electron mobility transistor(HEMT) is presented. Compared with the traditional equivalent circuit model, the gate forward and breakdown conductions(G_(gsf) and G_(gdf)) are introduced into the new model to characterize the gate leakage current. Additionally, for the new gate-connected field plate and the source-connected field plate of the device, an improved method for extracting the parasitic capacitances is proposed, which can be applied to the small-signal extraction for an asymmetric device. To verify the model, S-parameters are obtained from the modeling and measurements. The good agreement between the measured and the simulated results indicate that this model is accurate,stable and comparatively clear in physical significance.展开更多
The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at...The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at a wide range of temperature. In this paper, a temperature-variable high frequency dynamic model for the PIN diode is built, which is based on the Laplace-transform analytical model at constant temperature. The relationship between model parameters and temperature is expressed as temperature functions by analyzing the physical principle of these parameters. A fast recovery power diode MUR1560 is chosen as the test sample and its dynamic performance is tested under inductive load by a temperature chamber experiment, which is used for model parameter extraction and model verification. Results show that the model proposed in this paper is accurate for reverse recovery simulation with relatively small errors at the temperature range from 25 to 120 ℃.展开更多
文摘A new 22-element small signal equivalent circuit model for the AlGaN/G N high electron mobility transistor(HEMT) is presented. Compared with the traditional equivalent circuit model, the gate forward and breakdown conductions(G_(gsf) and G_(gdf)) are introduced into the new model to characterize the gate leakage current. Additionally, for the new gate-connected field plate and the source-connected field plate of the device, an improved method for extracting the parasitic capacitances is proposed, which can be applied to the small-signal extraction for an asymmetric device. To verify the model, S-parameters are obtained from the modeling and measurements. The good agreement between the measured and the simulated results indicate that this model is accurate,stable and comparatively clear in physical significance.
基金Project supported by the National High Technology and Development Program of China(No.2011AA11A265)
文摘The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at a wide range of temperature. In this paper, a temperature-variable high frequency dynamic model for the PIN diode is built, which is based on the Laplace-transform analytical model at constant temperature. The relationship between model parameters and temperature is expressed as temperature functions by analyzing the physical principle of these parameters. A fast recovery power diode MUR1560 is chosen as the test sample and its dynamic performance is tested under inductive load by a temperature chamber experiment, which is used for model parameter extraction and model verification. Results show that the model proposed in this paper is accurate for reverse recovery simulation with relatively small errors at the temperature range from 25 to 120 ℃.