Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloadin...Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency.展开更多
Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Sys...Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Systems) etc., in order to shorten the development cost, increase the system co ntrolling accuracy and reduce the complexity of controllers, the reduced order model must be constructed. Even in Virtual Reality (VR), the simulation and d isplay must be in real-time, the model order must be reduced too. The recent advances of MOR research are overviewed in the article. The MOR theor y and methods may be classified as Singular Value decomposition (SVD) based, the Krylov subspace based and others. The merits and demerits of the different meth ods are analyzed, and the existed problems are pointed out. Moreover, the applic ation’s fields are overviewed, and the potential applications are forecaste d. After the existed problems analyzed, the future work is described. There are som e problems in the traditional methods such as SVD and Krylov subspace, they are that it’s difficult to (1)guarantee the stability of the original system, (2) b e adaptive to nonlinear system, and (3) control the modeling accuracy. The f uture works may be solving the above problems on the foundation of the tradition al methods, and applying other methods such as wavelet or signal compression.展开更多
Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS)and analytic solutions for the describing partial differential equations are only available ...Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS)and analytic solutions for the describing partial differential equations are only available for simple geometries.Model order reduction(MOR)can extract approximate low-order model from the original large scale system.Conventional model order reduction algorithm is based on first-order system model,however,most structure mechanical MEMS systems are naturally second-order in time.For the purpose of solving the above problem,a direct second-order system model order reduction approach based on Krylov subspace projection for the coupled dynamic study of electrostatic torsional micromirrors is presented.The block Arnoldi process is applied to create the orthonormal vectors to construct the projection matrix,which enables the extraction of the low order model from the discretized system assembled through finite element analysis.The transfer functions of the reduced order model and the original model are expanded to demonstrate the moment-matching property of the second-order model reduction algorithm.The torsion and bending effect are included in the finite element model,and the squeeze film damping effect is considered as well.An empirical method considering relative error convergence is adopted to obtain the optimal choice of the order for the reduced model.A comparison research between the full model and the reduced model is carried out.The modeling accuracy and computation efficiency of the presented second-order model reduction method are confirmed by the comparison research results.The research provides references for MOR of MEMS.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive anal...Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.展开更多
Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industr...Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath.展开更多
The oscillatory stability analysis of multi-converter-fed systems(MCFSs)with modest computational resources needs a precise parametric reduced-order impedance model(PROIM).However,the traditional Krylov subspace based...The oscillatory stability analysis of multi-converter-fed systems(MCFSs)with modest computational resources needs a precise parametric reduced-order impedance model(PROIM).However,the traditional Krylov subspace based parametric model order reduction(KS-PMOR)method has difficulty in building precise PROIM for MCFSs.This is because the factors related to the errors of PROIM are complicated and coupled.To fill this gap,the factors associated with the accuracy of the KS-PMOR method are estimated by defining three indicators:the convergence error,cumulative error,and rank of projection matrix.Using the three indicators,a frequency-domain adaptive parametric model order reduction(FDA-PMOR)method is developed to form the precise PROIM of MCFSs for the accurate and fast oscillatory stability analysis.The accuracy of the obtained PROIM using the proposed FDA-PMOR method and its efficiency in actual oscillatory stability analysis are validated by three MCFSs with different scales,i.e.,a small-scale MCFS with four paralleled converter-based renewable energy generators(CREGs),a real-time simulation-based MCFS with eighteen paralleled CREGs,and a larger MCFS with ninety paralleled CREGs.展开更多
Abstract A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with ...Abstract A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determi- nation in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.展开更多
Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Surv...Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Survey in the year 2012. The model results show that some household characteristics such as the number of driver licenses household income and home location are significant.Yet the intersection density indicating the street patterns of home location and the dummy near the subway and the bus stop density indicating the transit accessibility of home location are insignificant.The model estimation obtains a good γ2 the goodness of fit of the model and the model validation also shows a good performance in prediction.The marginal effects of all the significant explanatory variables are calculated to quantify the odds change in the household car ownership following a one-unit change in the explanatory variables.展开更多
Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a rea...Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.展开更多
In this paper, we present an accelerated simulation approach on waveform relaxation using Krylov subspace for a large time-dependent system composed of some subsystems. This approach first allows these subsystems to b...In this paper, we present an accelerated simulation approach on waveform relaxation using Krylov subspace for a large time-dependent system composed of some subsystems. This approach first allows these subsystems to be decoupled by waveform relaxation. Then the Arnoldi procedure based on Krylov subspace is provided to accelerate the simulation of the decoupled subsystems independently. For the new approach, the convergent conditions on waveform relaxation are derived. The robust behavior is also successfully illustrated via numerical examples.展开更多
Model order reduction of interconnect circuits is an important technique to reduce the circuit complexity and improve the efficiency of post-layout verification process in the nanometer VLSI design. Existing works usi...Model order reduction of interconnect circuits is an important technique to reduce the circuit complexity and improve the efficiency of post-layout verification process in the nanometer VLSI design. Existing works using the Krylov subspace method are very efficient, but the resulting models are less compact and lack global accuracy. Also, existing methods cannot handle interconnect circuits with large input and output ports. Recent advances in reduction techniques using non-Krylov subspace techniques such as truncated balanced realization (TBR) hold some promise to solve these problems. In this paper, we first review the classic TBR-based reduction methods and then present the recent developments in fast TBR-based reduction and techniques such as PMTBR, SBPOR, and ETBR methods. These newly proposed methods try to avoid the expensive computing steps in traditional TBR methods at some cost to accuracy to boost efficiency and scalability, which is critical to reduce large interconnect parasitics modeled as RLCK circuits. The ETBR method can also reduce circuits with massive ports by considering the input signals. We show the pros and cons of each method and compare them on a set of large interconnect circuits, and finally point to some new research directions for this area.展开更多
A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper,paying special attention to the analysis of the model order problem.The method uses a neurofuzzy (NF) mo...A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper,paying special attention to the analysis of the model order problem.The method uses a neurofuzzy (NF) modeling of the unknown system,which combines fuzzy systems (FSs) with high order neural networks (HONNs).We propose the approximation of the unknown system by a special form of an NF-dynamical system (NFDS),which,however,may assume a smaller number of states than the original unknown model.The omission of states,referred to as a model order problem,is modeled by introducing a disturbance term in the approximating equations.The development is combined with a sensitivity analysis of the closed loop and provides a comprehensive and rigorous analysis of the stability properties.An adaptive modification method,termed ‘parameter hopping’,is incorporated into the weight estimation algorithm so that the existence and boundedness of the control signal are always assured.The applicability and potency of the method are tested by simulations on well known benchmarks such as ‘DC motor’ and ‘Lorenz system’,where it is shown that it performs quite well under a reduced model order assumption.Moreover,the proposed NF approach is shown to outperform simple recurrent high order neural networks (RHONNs).展开更多
Despite the efficiency of trajectory piecewise-linear(TPWL)model order re-duction(MOR)for nonlinear circuits,it needs large amount of expansion points forlarge-scale nonlinear circuits.This will inevitably increase th...Despite the efficiency of trajectory piecewise-linear(TPWL)model order re-duction(MOR)for nonlinear circuits,it needs large amount of expansion points forlarge-scale nonlinear circuits.This will inevitably increase the model size as well as the simulation time of the resulting reduced macromodels.In this paper,subspaceTPWL-MOR approach is developed for the model order reduction of nonlinear cir-cuits.By breaking the high-dimensional state space into several subspaces with much lower dimensions,the subspace TPWL-MOR has very promising advantages of re-ducing the number of expansion points as well as increasing the effective region of thereduced-order model in the state space.As a result,the model size and the accuracy of the TWPL model can be greatly improved.The numerical results have shown dra-matic reduction in the model size as well as the improvement in accuracy by using the subspace TPWL-MOR compared with the conventional TPWL-MOR approach.展开更多
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ...High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).展开更多
Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aim...Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.展开更多
This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and ...This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.展开更多
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow confi...Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.展开更多
Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performa...Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.展开更多
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p...State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.展开更多
基金supported by the National Nature Science Foundation of China(No.51678210)National Key Research and Development Program of China(No.2016YFC0701400).
文摘Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency.
文摘Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Systems) etc., in order to shorten the development cost, increase the system co ntrolling accuracy and reduce the complexity of controllers, the reduced order model must be constructed. Even in Virtual Reality (VR), the simulation and d isplay must be in real-time, the model order must be reduced too. The recent advances of MOR research are overviewed in the article. The MOR theor y and methods may be classified as Singular Value decomposition (SVD) based, the Krylov subspace based and others. The merits and demerits of the different meth ods are analyzed, and the existed problems are pointed out. Moreover, the applic ation’s fields are overviewed, and the potential applications are forecaste d. After the existed problems analyzed, the future work is described. There are som e problems in the traditional methods such as SVD and Krylov subspace, they are that it’s difficult to (1)guarantee the stability of the original system, (2) b e adaptive to nonlinear system, and (3) control the modeling accuracy. The f uture works may be solving the above problems on the foundation of the tradition al methods, and applying other methods such as wavelet or signal compression.
基金supported by National Natural Science Foundation of China(Grant No.50775201)National Science&Technology Major Project of China(Grant No.2009ZX04014-031)PhD Programs Foundation of Ministry of Education of China(Grant No.200803350031)
文摘Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS)and analytic solutions for the describing partial differential equations are only available for simple geometries.Model order reduction(MOR)can extract approximate low-order model from the original large scale system.Conventional model order reduction algorithm is based on first-order system model,however,most structure mechanical MEMS systems are naturally second-order in time.For the purpose of solving the above problem,a direct second-order system model order reduction approach based on Krylov subspace projection for the coupled dynamic study of electrostatic torsional micromirrors is presented.The block Arnoldi process is applied to create the orthonormal vectors to construct the projection matrix,which enables the extraction of the low order model from the discretized system assembled through finite element analysis.The transfer functions of the reduced order model and the original model are expanded to demonstrate the moment-matching property of the second-order model reduction algorithm.The torsion and bending effect are included in the finite element model,and the squeeze film damping effect is considered as well.An empirical method considering relative error convergence is adopted to obtain the optimal choice of the order for the reduced model.A comparison research between the full model and the reduced model is carried out.The modeling accuracy and computation efficiency of the presented second-order model reduction method are confirmed by the comparison research results.The research provides references for MOR of MEMS.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
文摘Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.
文摘Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath.
基金supported by Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(China Electric Power Research Institute)(No.NYB51202201695)National Natural Science Foundation of China(No.51677050)111 Project(No.BP0719039).
文摘The oscillatory stability analysis of multi-converter-fed systems(MCFSs)with modest computational resources needs a precise parametric reduced-order impedance model(PROIM).However,the traditional Krylov subspace based parametric model order reduction(KS-PMOR)method has difficulty in building precise PROIM for MCFSs.This is because the factors related to the errors of PROIM are complicated and coupled.To fill this gap,the factors associated with the accuracy of the KS-PMOR method are estimated by defining three indicators:the convergence error,cumulative error,and rank of projection matrix.Using the three indicators,a frequency-domain adaptive parametric model order reduction(FDA-PMOR)method is developed to form the precise PROIM of MCFSs for the accurate and fast oscillatory stability analysis.The accuracy of the obtained PROIM using the proposed FDA-PMOR method and its efficiency in actual oscillatory stability analysis are validated by three MCFSs with different scales,i.e.,a small-scale MCFS with four paralleled converter-based renewable energy generators(CREGs),a real-time simulation-based MCFS with eighteen paralleled CREGs,and a larger MCFS with ninety paralleled CREGs.
基金supported by the National Basic Research(973)Program(2015CB351702)the National Natural Science Foundation of China(81571756,81270023,81278412,81171409,81000583,81471740,81220108014)+2 种基金Beijing Nova Program(XXJH2015B079 to Z.Y.)the Outstanding Young Investigator Award of Institute of Psychology,Chinese Academy of Sciences(to Z.Y.)the Key Research Program and the Hundred Talents Program of the Chinese Academy of Sciences(KSZD-EW-TZ-002 to X.N.Z)
文摘Abstract A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determi- nation in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.
文摘Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Survey in the year 2012. The model results show that some household characteristics such as the number of driver licenses household income and home location are significant.Yet the intersection density indicating the street patterns of home location and the dummy near the subway and the bus stop density indicating the transit accessibility of home location are insignificant.The model estimation obtains a good γ2 the goodness of fit of the model and the model validation also shows a good performance in prediction.The marginal effects of all the significant explanatory variables are calculated to quantify the odds change in the household car ownership following a one-unit change in the explanatory variables.
基金supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.
基金This work was supported by the Natural Science Foundation of China(NSFC) under grant 11071192 and the International Science and Technology Cooperation Program of China under grant 2010DFA14700.
文摘In this paper, we present an accelerated simulation approach on waveform relaxation using Krylov subspace for a large time-dependent system composed of some subsystems. This approach first allows these subsystems to be decoupled by waveform relaxation. Then the Arnoldi procedure based on Krylov subspace is provided to accelerate the simulation of the decoupled subsystems independently. For the new approach, the convergent conditions on waveform relaxation are derived. The robust behavior is also successfully illustrated via numerical examples.
基金Supported in part by National Science Foundation (NSF) (Nos.CCF-0448534 and OISE-0929699)in part by the National Natural Science Foundation of China (No. 60828008)
文摘Model order reduction of interconnect circuits is an important technique to reduce the circuit complexity and improve the efficiency of post-layout verification process in the nanometer VLSI design. Existing works using the Krylov subspace method are very efficient, but the resulting models are less compact and lack global accuracy. Also, existing methods cannot handle interconnect circuits with large input and output ports. Recent advances in reduction techniques using non-Krylov subspace techniques such as truncated balanced realization (TBR) hold some promise to solve these problems. In this paper, we first review the classic TBR-based reduction methods and then present the recent developments in fast TBR-based reduction and techniques such as PMTBR, SBPOR, and ETBR methods. These newly proposed methods try to avoid the expensive computing steps in traditional TBR methods at some cost to accuracy to boost efficiency and scalability, which is critical to reduce large interconnect parasitics modeled as RLCK circuits. The ETBR method can also reduce circuits with massive ports by considering the input signals. We show the pros and cons of each method and compare them on a set of large interconnect circuits, and finally point to some new research directions for this area.
文摘A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper,paying special attention to the analysis of the model order problem.The method uses a neurofuzzy (NF) modeling of the unknown system,which combines fuzzy systems (FSs) with high order neural networks (HONNs).We propose the approximation of the unknown system by a special form of an NF-dynamical system (NFDS),which,however,may assume a smaller number of states than the original unknown model.The omission of states,referred to as a model order problem,is modeled by introducing a disturbance term in the approximating equations.The development is combined with a sensitivity analysis of the closed loop and provides a comprehensive and rigorous analysis of the stability properties.An adaptive modification method,termed ‘parameter hopping’,is incorporated into the weight estimation algorithm so that the existence and boundedness of the control signal are always assured.The applicability and potency of the method are tested by simulations on well known benchmarks such as ‘DC motor’ and ‘Lorenz system’,where it is shown that it performs quite well under a reduced model order assumption.Moreover,the proposed NF approach is shown to outperform simple recurrent high order neural networks (RHONNs).
文摘Despite the efficiency of trajectory piecewise-linear(TPWL)model order re-duction(MOR)for nonlinear circuits,it needs large amount of expansion points forlarge-scale nonlinear circuits.This will inevitably increase the model size as well as the simulation time of the resulting reduced macromodels.In this paper,subspaceTPWL-MOR approach is developed for the model order reduction of nonlinear cir-cuits.By breaking the high-dimensional state space into several subspaces with much lower dimensions,the subspace TPWL-MOR has very promising advantages of re-ducing the number of expansion points as well as increasing the effective region of thereduced-order model in the state space.As a result,the model size and the accuracy of the TWPL model can be greatly improved.The numerical results have shown dra-matic reduction in the model size as well as the improvement in accuracy by using the subspace TPWL-MOR compared with the conventional TPWL-MOR approach.
文摘High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).
基金supported by the National Natural Science Foundation of China (Nos. 11372036, 50875024)Excellent Young Scholars Research Fund of Beijing Institute of Technology of China (No. 2010Y0102)
文摘Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.
文摘This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
基金Supported by National Natural Science Foundation of China(Grant No.11372036)
文摘Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
基金co-National Science and Technology Major Project(No.2017-II-0009-0023)Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2019DYDS09)。
文摘Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.
基金Beijing Municipal Natural Science Foundation of China(Grant No.3182035)National Natural Science Foundation of China(Grant No.51877009).
文摘State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.