期刊文献+
共找到1,161,164篇文章
< 1 2 250 >
每页显示 20 50 100
TERIME:An Improved RIME Algorithm With Enhanced Exploration and Exploitation for Robust Parameter Extraction of Photovoltaic Models
1
作者 Shi-Shun Chen Yu-Tong Jiang +1 位作者 Wen-Bin Chen Xiao-Yang Li 《Journal of Bionic Engineering》 2025年第3期1535-1556,共22页
Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,... Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,the robustness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases.The unstable results will affect the reliable operation and maintenance strategies of PV systems.In response to this challenge,an improved rime optimization algorithm with enhanced exploration and exploitation,termed TERIME,is proposed for robust and accurate parameter identification for various PV models.Specifically,the differential evolution mutation operator is integrated in the exploration phase to enhance the population diversity.Meanwhile,a new exploitation strategy incorporating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation width and depth.The TERIME algorithm is applied to estimate the optimal parameters of the single diode model,double diode model,and triple diode model combined with the Lambert-W function for three PV cell and module types including RTC France,Photo Watt-PWP 201 and S75.According to the statistical analysis in 100 runs,the proposed algorithm achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environmental conditions.All of our source codes are publicly available at https://github.com/dirge1/TERIME. 展开更多
关键词 Photovoltaic modeling RIME algorithm Optimization problems Meta-heuristic algorithms STABILITY
在线阅读 下载PDF
Multifactor diagnostic model of converter energy consumption based on K-means algorithm and its application
2
作者 Fei-xiang Dai Guang Chen +3 位作者 Xiang-jun Bao Gong-guo Liu Lu Zhang Xiao-jing Yang 《Journal of Iron and Steel Research International》 2025年第8期2359-2369,共11页
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla... To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379. 展开更多
关键词 Equivalent energy consumption model Intelligent diagnostic model K-means clustering algorithm Online system Energy management
原文传递
IMLMA:An Intelligent Algorithm for Model Lifecycle Management with Automated Retraining,Versioning,and Monitoring
3
作者 Yu Cao Yiyun He Chi Zhang 《Journal of Electronic Research and Application》 2025年第5期233-248,共16页
With the rapid adoption of artificial intelligence(AI)in domains such as power,transportation,and finance,the number of machine learning and deep learning models has grown exponentially.However,challenges such as dela... With the rapid adoption of artificial intelligence(AI)in domains such as power,transportation,and finance,the number of machine learning and deep learning models has grown exponentially.However,challenges such as delayed retraining,inconsistent version management,insufficient drift monitoring,and limited data security still hinder efficient and reliable model operations.To address these issues,this paper proposes the Intelligent Model Lifecycle Management Algorithm(IMLMA).The algorithm employs a dual-trigger mechanism based on both data volume thresholds and time intervals to automate retraining,and applies Bayesian optimization for adaptive hyperparameter tuning to improve performance.A multi-metric replacement strategy,incorporating MSE,MAE,and R2,ensures that new models replace existing ones only when performance improvements are guaranteed.A versioning and traceability database supports comparison and visualization,while real-time monitoring with stability analysis enables early warnings of latency and drift.Finally,hash-based integrity checks secure both model files and datasets.Experimental validation in a power metering operation scenario demonstrates that IMLMA reduces model update delays,enhances predictive accuracy and stability,and maintains low latency under high concurrency.This work provides a practical,reusable,and scalable solution for intelligent model lifecycle management,with broad applicability to complex systems such as smart grids. 展开更多
关键词 model lifecycle management Intelligent algorithms Hyperparameter optimization Versioning and traceability Power metering
在线阅读 下载PDF
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
4
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 Variogram modelling Genetic algorithm(GA) Machine learning Gravity data Mineral exploration
在线阅读 下载PDF
A novel heuristic pathfinding algorithm for 3D security modeling and vulnerability assessment
5
作者 Jun Yang Yue-Ming Hong +2 位作者 Yu-Ming Lv Hao-Ming Ma Wen-Lin Wang 《Nuclear Science and Techniques》 2025年第5期152-166,共15页
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner... Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications. 展开更多
关键词 Physical protection system 3D modeling and simulation Vulnerability assessment A^(*)Heuristic Pathfinding Dijkstra algorithm
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
6
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry Data-driven modelling
在线阅读 下载PDF
Construction and validation of a machine learning algorithm-based predictive model for difficult colonoscopy insertion
7
作者 Ren-Xuan Gao Xin-Lei Wang +6 位作者 Ming-Jie Tian Xiao-Ming Li Jia-Jia Zhang Jun-Jing Wang Jing Gao Chao Zhang Zhi-Ting Li 《World Journal of Gastrointestinal Endoscopy》 2025年第7期149-161,共13页
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr... BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification. 展开更多
关键词 COLONOSCOPY Difficulty of colonoscopy insertion Machine learning algorithms Predictive model Logistic regression Least absolute shrinkage and selection operator regression Random forest
暂未订购
A Clustering Model Based on Density Peak Clustering and the Sparrow Search Algorithm for VANETs
8
作者 Chaoliang Wang Qi Fu Zhaohui Li 《Computers, Materials & Continua》 2025年第8期3707-3729,共23页
Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead... Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios. 展开更多
关键词 VANETS CLUSTER density peak clustering sparrow search algorithm
在线阅读 下载PDF
The Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm:A new earthquake clustering method and its application to the Sichuan–Yunnan Block
9
作者 JieYi Hou Feng Hu +1 位作者 Yang Zang LingYuan Meng 《Earth and Planetary Physics》 2025年第4期828-841,共14页
We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm el... We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm eliminates the need for hyperparameter tuning or reliance on fixed thresholds,offering enhanced flexibility for clustering across varied seismic scales.By integrating cumulative probability and BGMM with principal component analysis(PCA),the BGMM-NND algorithm effectively distinguishes between background and triggered earthquakes while maintaining the magnitude component and resolving the issue of excessively large spatial cluster domains.We apply the BGMM-NND algorithm to the Sichuan–Yunnan seismic catalog from 1971 to 2024,revealing notable variations in earthquake frequency,triggering characteristics,and recurrence patterns across different fault zones.Distinct clustering and triggering behaviors are identified along different segments of the Longmenshan Fault.Multiple seismic modes,namely,the short-distance mode,the medium-distance mode,the repeating-like mode,the uniform background mode,and the Wenchuan mode,are uncovered.The algorithm's flexibility and robust performance in earthquake clustering makes it a valuable tool for exploring seismicity characteristics,offering new insights into earthquake clustering and the spatiotemporal patterns of seismic activity. 展开更多
关键词 earthquake clustering BGMM-NND algorithm Sichuan–Yunnan Block seismic modes
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
10
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm
11
作者 Chen Fan Xindong Wang +1 位作者 Gaochao Li Jian Long 《Chinese Journal of Chemical Engineering》 2025年第4期130-146,共17页
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help... Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking. 展开更多
关键词 HYDROCRACKING Multi-objective optimization Improved SPEA2 Kinetic modeling
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
12
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Spatial Grasp Model for Distributed Management and Its Comparison With Traditional Algorithms
13
作者 Peter Simon Sapaty 《International Relations and Diplomacy》 2025年第3期164-179,共16页
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m... The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications. 展开更多
关键词 spatial awareness spatial control spatial consciousness Spatial Grasp Technology Spatial Grasp Language spatial scenarios cyber attacks distributed algorithms mobile agents
在线阅读 下载PDF
Dimensional synchronous modeling-based enhanced Kriging algorithm and adaptive Copula method for multi-objective synthetical reliability analyses
14
作者 Cheng LU Yunwen FENG +1 位作者 Chengwei FEI Da TENG 《Chinese Journal of Aeronautics》 2025年第9期144-165,共22页
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode... To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses. 展开更多
关键词 Adaptive Copula method Aeroengine turbine bladeddisc Aircraft landing gear system Correlation of multianalytical objectives Dimensional synchronous modeling-based enhanced Kriging algorithm Reliability analyses
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
15
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
16
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
17
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
18
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
19
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
20
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部