In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiabilit...An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiability of weak characteristics. The robustness of eigenparameter estimation to noise contamination is reinforced by the improved Hankel matrix, in combination with component energy index (CEI) which indicates the vibration intensity of signal components, an alternative stabilization diagram is adopted to effectively separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-freedom and experiment of a frame structure subject to wind excitation are presented to demonstrate the improvement of the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting the weak modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a better estimation of the weak modes from response signals of small signal to noise ratio (SNR)and gives a reliable separation of spurious and physical estimates.展开更多
The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinea...The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero. A comparison between the results of frequency domain and those of time domain is studied. Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed. The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics. Limit cycle oscillations (LCOs) are observed within linear flutter boundary. The response of the actuator-fin system is related to the initial disturbance. In the nonlinear condition, the amplitude of the control command has an influence on the flutter characteristics.展开更多
This paper proposes two concepts: the ecological footprint component index(EFCI) and the biocapacity component index(BCCI), based on the ecological footprint(EF) and Shannon entropy approaches. Per capita EFCI and BCC...This paper proposes two concepts: the ecological footprint component index(EFCI) and the biocapacity component index(BCCI), based on the ecological footprint(EF) and Shannon entropy approaches. Per capita EFCI and BCCI in China 1949-2013 are analyzed using empirical mode decomposition(EMD). Nonlinear models of per capita EFCI and BCCI in China 1949-2013 are presented and their cycles and predictions from 2014 to 2023 are analyzed. The results over the last 65 years show:(1) EFCI in China has increased constantly with fluctuations, while BCCI has slowly decreased. Their annual change rates are 2.81% and-1.26%, respectively. The increasing EFCI indicates a gradual improvement in China's sustainable development potential; the decreasing BCCI indicates severe environmental and population challenges.(2) The cycles of per capita EFCI have periods of 5.4 and 16.3 years, while cycles of per capita BCCI have periods of 3.6, 13,and 21.7 years. The predictive models indicate that EFCI will first decrease, reaching 0.02725 in2014, and will subsequently increase to 0.03261 in 2021. BCCI will increase, reaching 0.01365 in2014 and 0.01541 in 2022. EFCI and BCCI will reach 0.03037 and 0.01537, respectively, in 2023.Policymakers should ensure that the EFCI and BCCI increase in 2023.展开更多
The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established.The component mode synthesis method is used to establish the nonlinear governing e...The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established.The component mode synthesis method is used to establish the nonlinear governing equations by extending the connected relationships.Based on the modeling method,the Hilbert transform method is applied to identify the nonlinear stiffness of multi-degree-of-freedom structures.Nonlinear analysis and identification of a typical folding wing configuration with three freeplay hinges are investigated.The nonlinear governing equation is established based on present methods and the computing results of different stiffness are checked by finite element programming.In order to illustrate the influence of the nonlinearities,the frequency response characteristics of the structure are analyzed and Hilbert transform is performed.The Hilbert transform identification method is utilized to identify the nonlinear stiffness of nonlinear hinges in the time domain and several parametric studies are performed.In addition,the comparison of response is made to illustrate the feasibility of the methods.The results show that the extending component mode synthesis method in the present work can be used to establish the governing equation with structural nonlinearities.Based on the modeling method,the Hilbert transform identified method can be extended to multi-degree-of-freedom structures accurately.展开更多
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.
基金This project is supported by National Natural Science Foundation of China (No.10302019).
文摘An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiability of weak characteristics. The robustness of eigenparameter estimation to noise contamination is reinforced by the improved Hankel matrix, in combination with component energy index (CEI) which indicates the vibration intensity of signal components, an alternative stabilization diagram is adopted to effectively separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-freedom and experiment of a frame structure subject to wind excitation are presented to demonstrate the improvement of the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting the weak modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a better estimation of the weak modes from response signals of small signal to noise ratio (SNR)and gives a reliable separation of spurious and physical estimates.
基金National Natural Science Foundation of China(90716006, 10902006)Research Fund for the Doctoral Program of Higher Education of China (20091102110015)
文摘The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero. A comparison between the results of frequency domain and those of time domain is studied. Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed. The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics. Limit cycle oscillations (LCOs) are observed within linear flutter boundary. The response of the actuator-fin system is related to the initial disturbance. In the nonlinear condition, the amplitude of the control command has an influence on the flutter characteristics.
基金supported by the Opening Foundation of Jiangsu Key Laboratory of Environment Change&Ecological ConstructionNational Natural Science Foundation of China:[Grant Number 41372182]Research Center of Resource-exhausted Cities Transformation and Development:[Grant Number Kf2013y08]
文摘This paper proposes two concepts: the ecological footprint component index(EFCI) and the biocapacity component index(BCCI), based on the ecological footprint(EF) and Shannon entropy approaches. Per capita EFCI and BCCI in China 1949-2013 are analyzed using empirical mode decomposition(EMD). Nonlinear models of per capita EFCI and BCCI in China 1949-2013 are presented and their cycles and predictions from 2014 to 2023 are analyzed. The results over the last 65 years show:(1) EFCI in China has increased constantly with fluctuations, while BCCI has slowly decreased. Their annual change rates are 2.81% and-1.26%, respectively. The increasing EFCI indicates a gradual improvement in China's sustainable development potential; the decreasing BCCI indicates severe environmental and population challenges.(2) The cycles of per capita EFCI have periods of 5.4 and 16.3 years, while cycles of per capita BCCI have periods of 3.6, 13,and 21.7 years. The predictive models indicate that EFCI will first decrease, reaching 0.02725 in2014, and will subsequently increase to 0.03261 in 2021. BCCI will increase, reaching 0.01365 in2014 and 0.01541 in 2022. EFCI and BCCI will reach 0.03037 and 0.01537, respectively, in 2023.Policymakers should ensure that the EFCI and BCCI increase in 2023.
基金supported by the National Natural Sciences Foundation of China(Grant Nos.91116005 and 10902006)
文摘The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established.The component mode synthesis method is used to establish the nonlinear governing equations by extending the connected relationships.Based on the modeling method,the Hilbert transform method is applied to identify the nonlinear stiffness of multi-degree-of-freedom structures.Nonlinear analysis and identification of a typical folding wing configuration with three freeplay hinges are investigated.The nonlinear governing equation is established based on present methods and the computing results of different stiffness are checked by finite element programming.In order to illustrate the influence of the nonlinearities,the frequency response characteristics of the structure are analyzed and Hilbert transform is performed.The Hilbert transform identification method is utilized to identify the nonlinear stiffness of nonlinear hinges in the time domain and several parametric studies are performed.In addition,the comparison of response is made to illustrate the feasibility of the methods.The results show that the extending component mode synthesis method in the present work can be used to establish the governing equation with structural nonlinearities.Based on the modeling method,the Hilbert transform identified method can be extended to multi-degree-of-freedom structures accurately.