Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement ...Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement throughout the soil. In this study, the availability and mobility of six heavy metals in eight urban soils collected from different cities of Zhejiang Province, southeastern China were assessed using distribution coefficients(Kd) and retardation factor(Rf). The results showed that there were great differences in the Kd and Rfamong the tested soils. The adsorption sequences were Cr〉Pb〉Cu〉Cd〉Zn〉Ni, and the Kd decreased with increasing levels of metal addition. Ni generally has the lowest Rf values followed closely by Cd, and Zn whereas Cr and Pb reached the highest values. The results suggest that Ni and Zn have the highest mobility associated to the lowest adsorption, Cr and Pb present the opposite behavior. Correlation analysis indicates that soil pH, CaCO3 content, and cation exchange capacity (CEC) are key factors controlling the solubility and mobility of the metals in the urban soils.展开更多
文摘Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement throughout the soil. In this study, the availability and mobility of six heavy metals in eight urban soils collected from different cities of Zhejiang Province, southeastern China were assessed using distribution coefficients(Kd) and retardation factor(Rf). The results showed that there were great differences in the Kd and Rfamong the tested soils. The adsorption sequences were Cr〉Pb〉Cu〉Cd〉Zn〉Ni, and the Kd decreased with increasing levels of metal addition. Ni generally has the lowest Rf values followed closely by Cd, and Zn whereas Cr and Pb reached the highest values. The results suggest that Ni and Zn have the highest mobility associated to the lowest adsorption, Cr and Pb present the opposite behavior. Correlation analysis indicates that soil pH, CaCO3 content, and cation exchange capacity (CEC) are key factors controlling the solubility and mobility of the metals in the urban soils.