Usefulness of sensor network applications in human life is increasing day by day and the concept of wireless connection promises new application areas. Sensor network can be very beneficial in saving human life from t...Usefulness of sensor network applications in human life is increasing day by day and the concept of wireless connection promises new application areas. Sensor network can be very beneficial in saving human life from terrorist attacks causing explosion in certain areas leading to casualties. But realization of the sensor network application in explosive detection requires high scalability of the sensor network and fast transmission of the information through real time monitoring and control. In this paper a novel mechanism for explosive trace detection in any populated area by the use of mobile telephony has been described. The aim is to create a system that will assure common men, local population and above all the nation a secured environment, without disturbing their freedom of movement. It would further help the police in detection of explosives more quickly, isolation of suicide bombers, remediation of explosives manufacturing sites, and forensic and criminal investigation. To achieve this, the paper has projected an idea that can combine the strength of the mobile phones, the polymer sensor and existing cellular network. The idea is to design and embed a tiny cog-nitive radio sensor node into the mobile phone that adapts to the changing environment by analyzing the RF surroundings and adjusting the spectrum use appropriately. The system would be capable of detecting explo-sives within a defined territory. It would communicate the location of the detected explosives to the respec-tive service provider, which in turn would inform the law and enforcement agency or Police.展开更多
移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface,GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术...移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface,GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术以提升测试效率并检测潜在缺陷.收集了145篇相关论文,系统地梳理、分析和总结现有工作.提出了“测试生成器-测试环境”研究框架,将该领域的研究按照所属模块进行分类.特别地,依据测试生成器所基于的方法,将现有方法大致分为基于随机、基于启发式搜索、基于模型、基于机器学习和基于测试迁移这5个类别.此外,还从缺陷类别和测试动作等其他分类维度梳理现有方法.收集了该领域中较有影响力的数据集和开源工具.最后,总结当前面临的挑战并展望未来的研究方向.展开更多
文摘Usefulness of sensor network applications in human life is increasing day by day and the concept of wireless connection promises new application areas. Sensor network can be very beneficial in saving human life from terrorist attacks causing explosion in certain areas leading to casualties. But realization of the sensor network application in explosive detection requires high scalability of the sensor network and fast transmission of the information through real time monitoring and control. In this paper a novel mechanism for explosive trace detection in any populated area by the use of mobile telephony has been described. The aim is to create a system that will assure common men, local population and above all the nation a secured environment, without disturbing their freedom of movement. It would further help the police in detection of explosives more quickly, isolation of suicide bombers, remediation of explosives manufacturing sites, and forensic and criminal investigation. To achieve this, the paper has projected an idea that can combine the strength of the mobile phones, the polymer sensor and existing cellular network. The idea is to design and embed a tiny cog-nitive radio sensor node into the mobile phone that adapts to the changing environment by analyzing the RF surroundings and adjusting the spectrum use appropriately. The system would be capable of detecting explo-sives within a defined territory. It would communicate the location of the detected explosives to the respec-tive service provider, which in turn would inform the law and enforcement agency or Police.
文摘移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface,GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术以提升测试效率并检测潜在缺陷.收集了145篇相关论文,系统地梳理、分析和总结现有工作.提出了“测试生成器-测试环境”研究框架,将该领域的研究按照所属模块进行分类.特别地,依据测试生成器所基于的方法,将现有方法大致分为基于随机、基于启发式搜索、基于模型、基于机器学习和基于测试迁移这5个类别.此外,还从缺陷类别和测试动作等其他分类维度梳理现有方法.收集了该领域中较有影响力的数据集和开源工具.最后,总结当前面临的挑战并展望未来的研究方向.