Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a...Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response.展开更多
The advantages of genome selection(GS) in animal and plant breeding are self-evident.Traditional parametric models have disadvantage in better fit the increasingly large sequencing data and capture complex effects acc...The advantages of genome selection(GS) in animal and plant breeding are self-evident.Traditional parametric models have disadvantage in better fit the increasingly large sequencing data and capture complex effects accurately.Machine learning models have demonstrated remarkable potential in addressing these challenges.In this study,we introduced the concept of mixed kernel functions to explore the performance of support vector machine regression(SVR) in GS.Six single kernel functions(SVR_L,SVR_C,SVR_G,SVR_P,SVR_S,SVR_L) and four mixed kernel functions(SVR_GS,SVR_GP,SVR_LS,SVR_LP) were used to predict genome breeding values.The prediction accuracy,mean squared error(MSE) and mean absolute error(MAE) were used as evaluation indicators to compare with two traditional parametric models(GBLUP,BayesB) and two popular machine learning models(RF,KcRR).The results indicate that in most cases,the performance of the mixed kernel function model significantly outperforms that of GBLUP,BayesB and single kernel function.For instance,for T1 in the pig dataset,the predictive accuracy of SVR_GS is improved by 10% compared to GBLUP,and by approximately 4.4 and 18.6% compared to SVR_G and SVR_S respectively.For E1 in the wheat dataset,SVR_GS achieves 13.3% higher prediction accuracy than GBLUP.Among single kernel functions,the Laplacian and Gaussian kernel functions yield similar results,with the Gaussian kernel function performing better.The mixed kernel function notably reduces the MSE and MAE when compared to all single kernel functions.Furthermore,regarding runtime,SVR_GS and SVR_GP mixed kernel functions run approximately three times faster than GBLUP in the pig dataset,with only a slight increase in runtime compared to the single kernel function model.In summary,the mixed kernel function model of SVR demonstrates speed and accuracy competitiveness,and the model such as SVR_GS has important application potential for GS.展开更多
Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the litera...Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods.展开更多
基金supported by the Natural Science Foundation of Shaanxi Province(Grant No.2019JQ206)in part by the Science and Technology Department of Shaanxi Province(Grant No.2020CGXNG-009)in part by the Education Department of Shaanxi Province under Grant 17JK0346.
文摘Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response.
基金supported by the China Agriculture Research System of MOF and MARAthe National Natural Science Foundation of China (31872337 and 31501919)the Agricultural Science and Technology Innovation Project,China (ASTIP-IAS02)。
文摘The advantages of genome selection(GS) in animal and plant breeding are self-evident.Traditional parametric models have disadvantage in better fit the increasingly large sequencing data and capture complex effects accurately.Machine learning models have demonstrated remarkable potential in addressing these challenges.In this study,we introduced the concept of mixed kernel functions to explore the performance of support vector machine regression(SVR) in GS.Six single kernel functions(SVR_L,SVR_C,SVR_G,SVR_P,SVR_S,SVR_L) and four mixed kernel functions(SVR_GS,SVR_GP,SVR_LS,SVR_LP) were used to predict genome breeding values.The prediction accuracy,mean squared error(MSE) and mean absolute error(MAE) were used as evaluation indicators to compare with two traditional parametric models(GBLUP,BayesB) and two popular machine learning models(RF,KcRR).The results indicate that in most cases,the performance of the mixed kernel function model significantly outperforms that of GBLUP,BayesB and single kernel function.For instance,for T1 in the pig dataset,the predictive accuracy of SVR_GS is improved by 10% compared to GBLUP,and by approximately 4.4 and 18.6% compared to SVR_G and SVR_S respectively.For E1 in the wheat dataset,SVR_GS achieves 13.3% higher prediction accuracy than GBLUP.Among single kernel functions,the Laplacian and Gaussian kernel functions yield similar results,with the Gaussian kernel function performing better.The mixed kernel function notably reduces the MSE and MAE when compared to all single kernel functions.Furthermore,regarding runtime,SVR_GS and SVR_GP mixed kernel functions run approximately three times faster than GBLUP in the pig dataset,with only a slight increase in runtime compared to the single kernel function model.In summary,the mixed kernel function model of SVR demonstrates speed and accuracy competitiveness,and the model such as SVR_GS has important application potential for GS.
文摘Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods.