A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a...A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a binary switching sequence satisfying a conditional probability distribution,the commonest cases in engineering,such that the expectation of the measurements could be utilized during the iteration process.To consider the uncertainties in the system model,an upperbound for the estimation error covariance was obtained since its real value was unaccessible.Our filter scheme is on the basis of minimizing the obtained upper bound where we refer to the deduction of a classic Kalman filter thus calculation of the derivatives are avoided.Simulations are presented to illustrate the effectiveness of the proposed approach.展开更多
This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian li...This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.展开更多
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)
文摘A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a binary switching sequence satisfying a conditional probability distribution,the commonest cases in engineering,such that the expectation of the measurements could be utilized during the iteration process.To consider the uncertainties in the system model,an upperbound for the estimation error covariance was obtained since its real value was unaccessible.Our filter scheme is on the basis of minimizing the obtained upper bound where we refer to the deduction of a classic Kalman filter thus calculation of the derivatives are avoided.Simulations are presented to illustrate the effectiveness of the proposed approach.
文摘为实现中速磁浮列车悬浮系统的数据驱动异常检测,首先,引入基于参数化残差的异常检测方法;然后,针对当前悬浮系统的异常先验信息非常缺乏的问题,建立悬浮系统健康数据置信集和异常数据置信集,确定悬浮系统的异常检测评估函数与阈值;接着,异常误报率固定时以最小化异常漏检率为设计目标,从数理角度设计满足该目标的最优参数向量,并以此构建基于最低漏检率的悬浮系统异常检测算法;最后,以长沙磁浮快线的悬浮系统运行数据为例,对悬浮系统的间隙突变异常、砸轨异常和加速度传感器异常进行分析和检测.结果表明,在异常误报率为5%时,所提出的方法能够实现3种典型异常的全部检测,不存在对3种异常的漏检和对正常数据段的误检,最大异常检测滞后0.2 s.
基金supported by the National Natural Science Foundation of China(Nos.61374012,61273083 and 61403028)
文摘This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.