期刊文献+
共找到592篇文章
< 1 2 30 >
每页显示 20 50 100
Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites 被引量:1
1
作者 Hengrui Hu Jiayu Qin +3 位作者 Yunpeng Zhu Jinhui Wang Xiaoqiang Li Peipeng Jin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期407-424,共18页
Graphene nanoplates(GNPs)-reinforced magnesium matrix composites have been attracted great attention.However,knowledge is lack for the hot deformation behavior of GNP-reinforced magnesium(GNPs/Mg)composite.In this stu... Graphene nanoplates(GNPs)-reinforced magnesium matrix composites have been attracted great attention.However,knowledge is lack for the hot deformation behavior of GNP-reinforced magnesium(GNPs/Mg)composite.In this study,the fine-grained GNPs/Mg composite was fabricated by powder metallurgy process followed by extrusion.The hot deformation behavior,microstructure evolution and dynamic recrystallization(DRX)mechanism of fine-grained GNPs/Mg composite were investigated by hot compression test and electron back-scatter diffraction(EBSD).The hot compression tests of the composite were conducted at temperatures between 423 and 573 K with the strain rates from 0.001 to 1 s^(-1).The strain compensated power law equation was established to describe the hot deformation behavior of the composites.The stress exponent and activation energy of the composite are 7.76 and 83.23 kJ/mol,respectively,suggesting that the deformation mechanism is grain boundary slip controlled dislocation climb creep.The abnormally high stress exponent and activation energy are unattainable in the composite due to the fine grain size of the composites and the absence of Zener pinning and Orowan effects of GNPs reinforcement.The grain size increases with the decrease in Zener-Hollomn(Z)parameter,which can be well fitted by power-law relationship.With the increase in grain size and decrease in Z parameter,the geometrically necessary dislocation density decreases,which shows the approximately power-law relationship.A random and weak texture was formed after hot compression.The discontinuous dynamic recrystallization and continuous dynamic recrystallization mechanism dominated the DRX behavior at 473 K/0.001 s^(-1) and 573 K/0.001 s^(-1),respectively. 展开更多
关键词 GNPs Mg composite Hot deformation behavior Constitutive equations Microstructure evolution Dynamic recrystallization
原文传递
Influence of Microstructures on Hot Deformation Behavior and Microstructure Evolution of FGH4113A Superalloy
2
作者 Yang Jinlong Xiong Jiangying +3 位作者 Yin Chao Cheng Junyi Guo Jianzheng Feng Ganjiang 《稀有金属材料与工程》 北大核心 2025年第4期898-907,共10页
The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a... The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained. 展开更多
关键词 FGH4113A superalloy initial microstructure hot deformation behavior microstructure evolution
原文传递
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:1
3
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys Microstructure evolution Mechanical properties
原文传递
Microstructure evolution of laser directed energy deposition process prepared CNTs/WE43 composites during solution and aging treatment 被引量:1
4
作者 Lyuyuan Wang Zhaodian Wang +3 位作者 Lei Zhao Yuan Chen Yangfan Fu Dongsheng Wu 《Journal of Magnesium and Alloys》 2025年第7期3357-3372,共16页
Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in thi... Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in this study.The microstructure of the WE43 and CNTs/WE43 layers was systematically compared.The dissolution of divorced eutectics at the grain boundaries was retarded by CNTs during solution treatment.The spot segregation composed of Mg_(24)Y_(5),CNTs,and Zr cores in the solution treated CNTs/WE43 layer presented a slight decreasing in Y content.The grain growth of both types of layers underwent three stages:slow,rapid,and steady-state.The significant inhibitory effect of CNTs on the grain growth of the LDED WE43 matrix was more pronounced than the promoting effect of temperature,resulting in a 47%increase at 510℃ and a 35%increase at 540℃ in the grain growth exponent compared to the WE43 layers at 510℃.During the subsequent aging treatment at 225℃,the precipitation sequences from plate-shaped β″to plate-shaped and globular β′ were observed in both types of layers.CNTs can facilitate an increase in the nucleation rate of precipitates,but without accelerating precipitation hardening rate.The long and short diameters of the precipitates in peak-aged state were decreased by 48.5%and 43.1%by addition of CNTs,respectively.The wear resistance of both the WE43 and CNTs/WE43 layers can be significantly enhanced through solution and aging treatment.The enhancement in wear resistance for the CNTs/WE43 layers is considerably greater than that of the WE43 layers. 展开更多
关键词 Laser directed energy deposition Cnts-reinforced we43 composite Heat treatment Microstructure evolution
暂未订购
Progress in the Application of Cellular Automata to the Evolution of Solidified Microstructure
5
作者 WEI Pengfei CHEN Yunbo +5 位作者 WEI Shizhong MAO Feng WANG Xiaodong CHEN Chong WANG Jinnan WANG Zidong 《材料导报》 北大核心 2025年第12期196-213,共18页
The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predic... The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predict microstructural growth. This review comprehensively explains the developments and applications of CA in solidification structure simulation, including the theoretical underpinnings, computational procedures, software development, and recent advances. Summarizes the potential and limitations of cellular automata in understanding microstructure evolution during solidification, explores the evolution of microstructures during solidification, and adds to our existing knowledge of cellular automaton theory. Finally, the research trend in simulating the evolution of the solidification microstructure using cellular automaton theory is explored. 展开更多
关键词 cellular automata dendritic growth SIMULATION microstructure evolution SOLIDIFICATION
在线阅读 下载PDF
Microstructure Evolution and Deformation Mechanism of DZ125 Ni-based Superalloy During High-Temperature Creep
6
作者 Li Yongxiang Tian Ning +3 位作者 Zhang Ping Zhang Shunke Yan Huajin Zhao Guoqi 《稀有金属材料与工程》 北大核心 2025年第7期1733-1740,共8页
The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the init... The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature. 展开更多
关键词 DZ125 Ni-based superalloy CREEP dislocation network deformation mechanism microstructure evolution
原文传递
Constitutive Model and Microstructure Evolution of Asextruded Ti-6554 Alloy Based on Temperature Rise Correction
7
作者 Li Changmin Luo Hengjun +6 位作者 Zhao Ning Guo Shiqi Wei Minggang Xiang Wei Cui Mingliang Xie Jing Huang Liang 《稀有金属材料与工程》 北大核心 2025年第9期2189-2198,共10页
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat... The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX. 展开更多
关键词 as-extruded Ti-6554 alloy temperature rise correction constitutive model microstructure evolution
原文传递
Microstructural Evolution of Rapidly Solidified Ni-Cu Alloys
8
作者 QU Shuwei LI Zejun +4 位作者 WANG Hongfu TIAN Xiaoguang QIAN Zhike LI Ruiqin YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1759-1765,共7页
This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined wi... This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined with optical microscopy and electron backscatter diffraction(EBSD)analysis demonstrate that increasing undercooling(ΔT)can induce a consistent sequence of microstructural transitions:coarse dendrites,fine equiaxed grains(first refinement),oriented fine dendrites,and fine equiaxed grains(second refinement).Two distinct grain refinement events are identified,with critical undercooling thresholds(ΔT)dependent on composition:increasing Cu content increases the critical undercoolingΔT*required for the second refinement(Cu55Ni45:227 K;Cu60Ni40:217 K;Ni65Cu35:200 K).The BCT(Bridgman Crystal Growth)model quantitatively elucidates this behavior,revealing a shift from solute-diffusion-dominated growth at low undercooling to thermally dominated diffusion at high undercooling(ΔT).Crucially,refined grains at high undercooling exhibit smaller sizes(10μm)and higher uniformity than those at low undercooling(20μm).These findings provide fundamental insights into non-equilibrium solidification mechanisms and establish a foundation for designing high-performance Ni-Cu alloys via deep undercooling processing. 展开更多
关键词 deep undercooling Ni-Cu alloys microstructural evolution grain refinement BCT model rapid solidification
原文传递
Indentation-induced deformation twinning in magnesium:Phase-field modeling of microstructure evolution and size effects
9
作者 Mohsen Rezaee-Hajidehi Przemysław Sadowski Stanisław Stupkiewicz 《Journal of Magnesium and Alloys》 2025年第4期1721-1742,共22页
Magnesium is distinguished by its highly anisotropic inelastic deformation involving a profuse activity of deformation twinning.Instrumented micro/nano-indentation technique has been widely applied to characterize the... Magnesium is distinguished by its highly anisotropic inelastic deformation involving a profuse activity of deformation twinning.Instrumented micro/nano-indentation technique has been widely applied to characterize the mechanical properties of magnesium,typically through the analysis of the indentation load-depth response,surface topography,and less commonly,the post-mortem microstructure within the bulk material.However,experimental limitations prevent the real-time observation of the evolving microstructure.To bridge this gap,we employ a recently-developed finite-strain model that couples the phase-field method and conventional crystal plasticity to simulate the evolution of the indentation-induced twin microstructure and its interaction with plastic slip in a magnesium single-crystal.Particular emphasis is placed on two aspects:orientation-dependent inelastic deformation and indentation size effects.Several outcomes of our 2D computational study are consistent with prior experimental observations.Chief among them is the intricate morphology of twin microstructure obtained at large spatial scales,which,to our knowledge,represents a level of detail that has not been captured in previous modeling studies.To further elucidate on size effects,we extend the model by incorporating gradient-enhanced crystal plasticity,and re-examine the notion of‘smaller is stronger’.The corresponding results underscore the dominant influence of gradient plasticity over the interfacial energy of twin boundaries in governing the size-dependent mechanical response. 展开更多
关键词 Magnesium alloys Deformation twinning Micro/nano-indentation Microstructure evolution Phase-field method Crystal plasticity
在线阅读 下载PDF
Microstructure evolution and self-discharge degradation mechanism in Li/MnO_(2) primary batteries
10
作者 Jia-Rui Zhang Cheng-Yu Li +5 位作者 Xiang Gao Jie Yin Cai-Rong Jiang Jian-Jun Ma Wen-Ge Yang Yong-Jin Chen 《Rare Metals》 2025年第2期1392-1400,共9页
Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is s... Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is still needed.Here,the storage mechanism of Li^(+)in the tunnel structure of MnO_(2) as well as the dissolution and migration of Mn-ions were investigated based on multi-scale approaches.The Li/Mn ratio(at%)is determined at about 0.82 when the discharge voltage decreases to 2 V.The limited Li-ions transport rate in the bulk MnO_(2) restrains the reduction reaction,resulting in a low practical specific capacity.Moreover,utilizing spherical aberration-corrected transmission electron microscopy(TEM)coupled with electron energy loss spectroscopy(EELS),the presence of a mixed valence state layer of Mn^(2+)/Mn^(3+)/Mn^(4+)on the surface of the original 20 nm MnO_(2) particles was identified,which could contribute to the initial dissolution of Mn-ions.The battery separator exhibited channels for Mn-ions migration and diffusion and aggregated Mn particles.We put forward the discharge and degradation route in the ways of Mn-ions trajectories,and our findings provide a deep understanding of the high self-discharge rates and the capacity decay of Li-Mn primary batteries. 展开更多
关键词 Li MnO primary batteries multi scale approaches primary batteries Li insertion mechanism self discharge degradation microstructure evolution tunnel structure Li Mn ratio
原文传递
Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing
11
作者 Jian Zang Jianrong Liu +4 位作者 Qingjiang Wang Haibing Tan Bohua Zhang Xiaolin Dong Zibo Zhao 《Acta Metallurgica Sinica(English Letters)》 2025年第1期107-120,共14页
The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prep... The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prepared through distinct pretreatments,were systematically analyzed.Morphological analysis reveals that while both thickαplatelets and coarse priorβgrains impede the spheroidization of lamellar structures,the influence of the former is more pronounced.Variations inαplatelet thickness priorβgrain size exhibit limited impact on the macro-texture type after deformation and annealing.The proportion of low-angle interfaces between the c-axis of the primaryαphase and the<110>direction of the priorβgrains was elevated in rods with thicker platelets compared to thinner ones. 展开更多
关键词 Ti65 alloy Thermomechanical processing αplatelet thickness Priorβgrain size Microstructure evolution TEXTURE
原文传递
Microstructure evolution and corrosion behavior of TIG welded joint of a new Mg-Gd-Nd-Zn-Zr alloy during post-weld heat treatment
12
作者 Xin Tong Qiman Wang +3 位作者 Guohua Wu Fangzhou Qi Junmin Zhan Liang Zhang 《Journal of Magnesium and Alloys》 2025年第8期3798-3818,共21页
The corrosion behavior of the tungsten inert gas(TIG)welded Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy with different post-weld heat treatments was systematically investigated.The results show that the corrosion resistance of the s... The corrosion behavior of the tungsten inert gas(TIG)welded Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy with different post-weld heat treatments was systematically investigated.The results show that the corrosion resistance of the sand-cast base material(BM)was inferior to that of the fusion zone(FZ),which was attributed to the larger grain size and exacerbated galvanic corrosion caused by coarser Mg_3(Nd,Gd)eutectic phases and numerousβprecipitates.It is found that post-weld solid-solution(T4)treatment could significantly enhance the corrosion resistance of the joint due to the dissolution of the cathodic second phases and the denser protective film abundant in RE oxides generated in corrosive solution.The precipitation of nanosized phases and Zn-Zr clusters would slightly increase the susceptibility to localized corrosion of the peak-aged(T6) joint.As the main corrosion products,MgO and Mg(OH)_(2) are distributed throughout the whole corrosion film,while RE oxides and RE hydroxides are mainly distributed in the inner layer,which can be explained by inward oxidation and replacement reactions between RE elements and MgO/Mg(OH)_(2).Based on the composition and structure of the corrosion product film,a physical model has been proposed for depicting the microstructure evolution associated with the corresponding corrosion behavior of the joints.This work could promote the applications of welded Mg-RE alloy joint in some corrosion environments. 展开更多
关键词 TIG welding Mg-Gd-Nd alloy Heat treatment Microstructure evolution Corrosion behavior
在线阅读 下载PDF
Effect of Si on evolution of microstructure and wear resistance of Al_(0.5)CrFeNi_(2.5)high-entropy alloy fabricated via laser melting deposition
13
作者 Bing-qian Jin Hui-shu Yu +4 位作者 Sai-nan Nie Bo-wei Xing Yan Chen Jia-qing You Nan-nan Zhang 《Journal of Iron and Steel Research International》 2025年第7期2152-2162,共11页
Al_(0.5)CrFeNi_(2.5)high-entropy alloy(HEA)was reinforced by the small-radius Si.Al_(0.5)CrFeNi_(2.5)Six(x=0 and 0.25)HEAs were fabricated by laser melting deposition.The evolution of microstructure,nanohardness,and w... Al_(0.5)CrFeNi_(2.5)high-entropy alloy(HEA)was reinforced by the small-radius Si.Al_(0.5)CrFeNi_(2.5)Six(x=0 and 0.25)HEAs were fabricated by laser melting deposition.The evolution of microstructure,nanohardness,and wear properties of Al_(0.5)CrFeNi_(2.5)Six(x=0 and 0.25)HEAs were systematically investigated.Al_(0.5)CrFeNi_(2.5)HEA exhibits a face-centered cubic(FCC)matrix with Ni3Al-type ordered nanoprecipitates.When Si was doped,σphase and Cr-rich nanoprecipitates existed in the B2 matrix and L12 in the FCC matrix.The nanohardness was increased from 4.67 to 5.45 GPa with doping of Si,which is associated with forming the new phases and improved nanohardness of L12/FCC phases.The coefficient of friction(COF)value was reduced from 0.75 to 0.67 by adding Si.σphase and Cr-rich nanoprecipitates in B2 matrix support a decreased wear rate from 7.87×10^(-4) to 6.82×10^(-4) mm^(3)/(N m).Furthermore,the main wear mechanism of Al_(0.5)CrFeNi_(2.5)and Al_(0.5)CrFeNi_(2.5)Si0.25 HEAs is abrasive wear. 展开更多
关键词 High-entropy alloy -Laser melting deposition SI Microstructural evolution Wear property
原文传递
Phase Transformation and Microstructural Evolution of Austenitic Stainless Steel Based on High-pressure Torsion
14
作者 BIAN Runyu QIAN Chenhao +2 位作者 DONG Ying WU Siyuan SHAO Hengrui 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1766-1773,共8页
The 304 austenitic stainless steel was processed by high-pressure torsion(HPT)at room temperature with 10,20,and 30 rotations under a pressure of 3 GPa and a rotation speed of 1 r/min.The phase transformation and micr... The 304 austenitic stainless steel was processed by high-pressure torsion(HPT)at room temperature with 10,20,and 30 rotations under a pressure of 3 GPa and a rotation speed of 1 r/min.The phase transformation and microstructural evolution of 304 stainless steel after HPT were investigated by X-ray diffraction(XRD)analysis,electron backscatter diffraction(EBSD)analysis,transmission electron microscopy(TEM),nanoindentation test and differential scanning calorimetry(DSC)analysis.The experimental results show that HPT causes elongated nanocrystalline grains of 25 nm width along the torsion direction.After 10 turns of HPT,the deformation-induced martensitic transformation is completed and the hardness increases from 3 GPa to 8.5 GPa at the edge of the disc.However,a local reverse phase transformation from martensite to austenite is observed in the peripheral regions of the sample after 30 turns of HPT,leading to a higher volume fraction of austenite,and the hardness of the sample also decreases accordingly. 展开更多
关键词 304 stainless steel high-pressure torsion phase transformation microstructural evolution HARDNESS
原文传递
The effect of grain size and rolling reduction on microstructure evolution and annealing hardening response of a Mg-3Gd alloy
15
作者 F.Han X.Luo +6 位作者 Q.Liu Z.Hou K.Marthinsen G.L.Wu C.Hatzoglou P.Kontis X.Huang 《Journal of Magnesium and Alloys》 2025年第7期3037-3054,共18页
Mg-3Gd(wt.%)samples with different initial grain sizes were prepared to evaluate the grain size effect on microstructural evolution during cold rolling and subsequent annealing hardening response.The deformation behav... Mg-3Gd(wt.%)samples with different initial grain sizes were prepared to evaluate the grain size effect on microstructural evolution during cold rolling and subsequent annealing hardening response.The deformation behavior and mechanical response of the as-rolled and annealed samples were systematically investigated by a combination of electron microscopy and microhardness characterization.The results show that the twinning activities were highly suppressed in the fine-grained samples during rolling.Upon increasing the rolling reduction to 40%,ultra-fine grain structures with a volume fraction of∼28%were formed due to the activation of multiple slip systems.Conversely,twinning dominated the early stages of deformation in the coarse-grained samples.After a 10%rolling reduction,numerous twins with a volume fraction of∼23%were formed.Further increasing the rolling reduction to 40%,high-density dislocations were activated and twin structures with a volume fraction of∼36%were formed.The annealing hardening response of deformed samples was effectively enhanced compared to that of the non-deformed samples,which was attributed to the enhanced Gd segregation along grain boundaries,twin boundaries and dislocation cores.Moreover,the grain size and rolling reduction were found to affect the microstructure evolution during annealing,resulting in a notable difference in the annealing hardening response of Mg-3Gd alloy between samples of different grain sizes deformed to different strains.These findings highlight the crucial importance of microstructural and processing parameters in the design of high-strength,cost-effective Mg alloys. 展开更多
关键词 Mg-Gd alloy Grain size effect Deformation mechanism Microstructural evolution Annealing hardening
在线阅读 下载PDF
Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals
16
作者 Chenghao Liu Wenchao Dong +1 位作者 Jian Sun Shanping Lu 《Acta Metallurgica Sinica(English Letters)》 2025年第2期338-352,共15页
In the study,three 16Cr-25.5Ni-4.2Mo superaustenitic stainless steel weld metals with C contents of 0.082 wt%,0.075 wt%,and 0.045 wt%,were prepared to investigate the microstructural evolution and its effect on mechan... In the study,three 16Cr-25.5Ni-4.2Mo superaustenitic stainless steel weld metals with C contents of 0.082 wt%,0.075 wt%,and 0.045 wt%,were prepared to investigate the microstructural evolution and its effect on mechanical behavior.At a C content of 0.082 wt%,the microstructure of weld metal consisted of austenite,M_(6)C,and M_(23)C_(6),where M_(6)C was the main carbide.The number and average size of the M_(6)C carbides significantly decreased as the C content decreased.At a C content of 0.045 wt%,only a very small number of M_(6)C carbides were observed in the weld metal.For the tensile process,the number of deformation twins increased as the C content decreased,which introduced a stronger dynamic Hall-Petch effect,resulting in only a small decrease in the ultimate tensile strength of the weld metal.Meanwhile,the increase in deformation twins significantly enhanced the elongation of the weld metals.For the impact process,the impact energy increased from 204 to 241 J as the C content decreased.The crack initiation resistance was improved due to the reduction in M_(6)C carbide,which inhibited cracking at the interface of M_(6)C/matrix.Additionally,the crack propagation resistance was enhanced due to the increase in deformation twins,which consumed more impact energy. 展开更多
关键词 Superaustenitic stainless steel weld metal Microstructural evolution Carbides Mechanical properties Deformation twins
原文传递
Mechanical properties and microstructure evolution of T2 copper in multimodal ultrasonic vibration assisted micro-compression
17
作者 Weiqiang Wan Zidong Yin +6 位作者 Guangchao Han Ming Yang Jitao Hu Fuchu Liu Linhong Xu Wei Bai Hui Chen 《Journal of Materials Science & Technology》 2025年第5期152-163,共12页
Multimodal ultrasonic vibration(UV)assisted micro-forming has been widely investigated for its advantages of further reducing forming loads and improving forming quality.However,the influence mechanism of different UV... Multimodal ultrasonic vibration(UV)assisted micro-forming has been widely investigated for its advantages of further reducing forming loads and improving forming quality.However,the influence mechanism of different UV modes on microstructure evolution and mechanical properties was still unclear.Mul-timodal UV assisted micro-compression tests on T2 copper with different grains and sample sizes were conducted in this study.The microstructure evolution for different UV modes was observed by EBSD.The results showed that the true stress reduction caused by UV was increased sequentially with tool ultrasonic vibration(TV),mold ultrasonic vibration(MV)and compound ultrasonic vibration(CV).The region of grain deformation was shifted along the direction of UV,and the MV promoted the uniform distribution of deformation stress.The grain refinement,fiber streamline density,grain deformation and rotation degree were further enhanced under CV,due to the synergistic effect of TV and MV.Additionally,a coupled theoretical model considering both acoustic softening effect and size effect was proposed for describing the mechanical properties.And a physical model of dislocation motion in different UV modes was developed for describing the microstructure evolution.The maximum error between the theoretical and experimental results was only 2.39%.This study provides a theoretical basis for the optimization of UV assisted micro-forming process. 展开更多
关键词 Multimodal ultrasonic vibration Microstructure evolution Acoustic softening Size effect Coupling mechanism
原文传递
Characterization of hot processing behavior,microstructure evolution and underlying mechanism of GH3230 superalloy during hot deformation
18
作者 Biao Zhang Quan Ju +2 位作者 Rui-wen Song Bai-gang Wang Hao Wang 《Journal of Iron and Steel Research International》 2025年第6期1763-1779,共17页
The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experim... The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experiments.Based on the obtained flow stresses,a strain-compensated Arrhenius-type model was developed for the description of hot deformation behavior,and the consistency of the predicted flow stresses with the experimental values confirms the accuracy of the developed model.Furthermore,the processing maps were constructed and classified into the instability domain,low-dissipation stability domain and high-dissipation stability domain in accordance with the dynamic material model and the instability criterion.Microstructure observations indicated that the instability domain exhibits the adiabatic shear bands formation,and the low-power dissipation domain exhibits partial dynamic recrystallization(DRX),with the temperature increase/strain rate decrease being favorable for the DRX.The high-dissipation stability domain was occupied by uniformly fine equiaxed grains,and was identified as the optimal processing window,which corresponds to the deformation conditions at 1070–1150℃ with strain rates ranging from 0.01 to 0.15 s^(–1).Moreover,various DRX mechanisms are observed to occur during the hot deformation,which include the discontinuous dynamic recrystallization,characterized by nucleation at bulged boundaries,the continuous dynamic recrystallization with subgrain progressive rotation and the particle stimulated nucleation mechanism with stimulated nucleation of carbide particles. 展开更多
关键词 Nickel-based superalloy Hot deformation Processing map Microstructure evolution Dynamic recrystallization mechanism
原文传递
Microstructure evolution of K439B Ni-based superalloy casting with varying cross-sections by experiments and simulations
19
作者 Da-shan SUI De-peng ZHOU +2 位作者 Yang LIU Yu SHAN An-ping DONG 《Transactions of Nonferrous Metals Society of China》 2025年第4期1182-1196,共15页
Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment... Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment casting process.Firstly,microstructure analysis was conducted on the casting using scanning electron microscopy(SEM)and electron backscatter diffraction(EBSD).Subsequently,calculation of the phase diagram and differential scanning calorimetry(DSC)tests were conducted to determine the macro-micro simulation parameters of the K439B alloy,and the cellular automaton finite element(CAFE)method was employed to develop macro-micro modeling of K439B nickel-based superalloy casting with varying cross-sections.The experimental results revealed that the ratio of the average grain area increased from the edge to the center of the sections as the ratio of the cross-sectional area increased.The simulation results indicated that the average grain area increased from 0.885 to 0.956 mm^(2)as the ratio of the cross-sections increased from 6꞉1 to 12꞉1.The experiment and simulation results showed that the grain size became more heterogeneous and the grain shape became more irregular with an increase in the ratio of the cross-sectional area of the casting.CAFE modeling was an effective method to simulate the microstructure evolution of the K439B alloy and ensure the accuracy of the simulation. 展开更多
关键词 K439B nickel-based superalloy cellular automaton cellular automaton finite element method varying cross-section investment casting microstructure evolution
在线阅读 下载PDF
From macro-,through meso-to micro-scale:Densification behavior,deformation response and microstructural evolution of selective laser melted Mg-RE alloy
20
作者 Cheng Chang Guangrui Yao +6 位作者 Sophie C.Cox Xiaofeng Zhang Liyuan Sheng Min Liu Weili Cheng Yang Lu Xingchen Yan 《Journal of Magnesium and Alloys》 2025年第8期3947-3963,共17页
To clarify the densification behavior,deformation response and strengthening mechanisms of selective laser melted(SLM)Mg-RE alloys,this study systematically investigates a representative WE43 alloy via advanced materi... To clarify the densification behavior,deformation response and strengthening mechanisms of selective laser melted(SLM)Mg-RE alloys,this study systematically investigates a representative WE43 alloy via advanced material characterization techniques.A suitable laser output mode fell into the transition mode,allowing for the fabrication of nearly full-density samples(porosity=0.85±0.021%)with favorable mechanical properties(yield strength=351 MPa,ultimate tensile strength=417 MPa,the elongation at break=6.5%and microhardness=137.9±6.15 HV_(0.1))using optimal processing parameters(P=80 W,v=250 mm/s and d=50μm).Viscoplastic self-consistent analysis and transmission electron microscopy observations reveal that the plastic deformation response of the SLM Mg-RE alloys is primarily driven by basal and prismatic slips.Starting from a random texture before deformation(maximum multiple of ultimate density,Max.MUD=3.95),plastic stretching led the grains to align with the Z-axis,finally resulting in a{0001}<1010>texture orientation after fracture(Max.MUD=8.755).Main phases of the SLM state are mainly composed ofα-Mg,Mg_(24)Y_(5) andβ'-Mg_(41)Nd_(5),with an average grain size of only 4.27μm(about a quarter of that in the extruded state),resulting in a favorable strength-toughness ratio.Except for the nano-β'phase and semi-coherent Mg_(24)Y_(5) phase(mismatch=16.12%)around the grain boundaries,a small amount of nano-ZrO_(2) and Y_(2)O_(3) particles also play a role in dispersion strengthening.The high mechanical properties of the SLM state are chiefly attributed to precipitation hardening(44.41%),solid solution strengthening(34.06%)and grain boundary strengthening(21.53%),with precipitation hardening being predominantly driven by dislocation strengthening(67.77%).High-performance SLM Mg-RE alloy components were manufactured and showcased at TCT Asia 2024,receiving favorable attention.This work underscores the significant application potential of SLM Mg-RE alloys and establishes a strong foundation for advancing their use in the biomedical fields. 展开更多
关键词 Selective laser melting Mg-RE alloys Microstructural evolution Mechanical properties Plastic deformation mechanism
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部