Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into...Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.展开更多
Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively invest...Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm.展开更多
Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us...Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).展开更多
In current research,Li_(2)O-Al_(2)O_(3)-SiO_(2)glass-ceramics were prepared by conventional meltquenching and subsequent heat treatment method.The effect of Al_(2)O_(3)content on microstructures,thermal properties,cry...In current research,Li_(2)O-Al_(2)O_(3)-SiO_(2)glass-ceramics were prepared by conventional meltquenching and subsequent heat treatment method.The effect of Al_(2)O_(3)content on microstructures,thermal properties,crystallization behaviours and mechanical properties were investigated.FTIR,Raman spectroscopy and nuclear magnetic resonance spectroscopy microstructure analysis showed that the silico-oxygen network was damaged,while the increase of[AlO_(4)]content repaired the glass network,and finally made the glass network have better connectivity,with the decrease of SiO_(2).The thermal analysis confirmed the increasing glass transition and crystallization temperatures from growing Al_(2)O_(3)content.In addition,different crystal phases can be precipitated in the glass matrix,such as LiAlSi_(4)O_(10),Li_(2)Si_(2)O_(5) in glass with low Al_(2)O_(3)content,the combination of Li_xAl_xSi_(1-x)O_(2),LiAlSi_(3)O_(8),Li_(2)SiO_(3)in glass with intermediate Al_(2)O_(3)content,and the combination of LiAlSi_(2)O_(6),SiO_(2)in glass with high Al_(2)O_(3)content.The hardness of as-prepared glass gradually increases with the increase of the Al_(2)O_(3)content.The Vickers hardness of the glass-ceramics is highly dependent on the Al_(2)O_(3)content in the glass and the heat treatment temperatures,reaching a maximum of 10.11 GPa.Scanning electron microscope images show that the crystals change from spherical to massive and finally to sheet.The change of glass structure,crystal phase and morphology is the main reason for the different mechanical properties.展开更多
The effect of antibacterial adhesive on the biological corrosion resistance of mortar in seawater environment was studied by means of scanning electron microscope,thermogravimetric analysis,X-ray diffraction,Fourier t...The effect of antibacterial adhesive on the biological corrosion resistance of mortar in seawater environment was studied by means of scanning electron microscope,thermogravimetric analysis,X-ray diffraction,Fourier transform infrared spectroscopy,and ultra-depth microscope.The results show that the antibacterial adhesive can effectively inhibit the growth of sulfur-oxidizing bacteria in seawater,hinder their metabolism to produce biological sulfate,and reduce the formation of destructive product gypsum.The mineral composition and thermal analysis showed that the peak value of plaster diffraction peak and the mass loss of plaster dehydration in antibacterial adhesive group were significantly lower than those in blank group(without protective coating group).In addition,the electric flux of chloride ions(>400 C)in the blank group of mortar samples was higher than that in the antibacterial adhesive group(<200 C),indicating that the antibacterial adhesive can effectively reduce the permeability of chloride ions in mortar,and thus hinder the Cl-erosion in seawater.展开更多
The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepar...The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepared by vacuum arc melting.The microstructure,mechanical properties,and related influencing mechanisms were systematically investigated.The results indicate that the solidification microstructure of the Ti46Al1.5Cr8Nb-xTa alloys comprises theγ-TiAl phase,α_(2)-Ti_(3)Al phase,and B2 phase.As the Ta content increases from 0.2 at.%to 1.0 at.%,the content ofα_(2)phase and B2 phase increases,while theγphase content decreases.Among them,the B2 phase shows the most pronounced change,being significantly refined,with its content increasing from 12.49%to 21.91%.In addition,the average size of the lamellar colony decreases from 160.65 to 94.44μm.The addition of the Ta element shifts the solidification path toward lower aluminum concentrations,leading to changes in phase content.The tantalum-induced increase in the B2 phase and enhanced supercooling at the solidification front provide the basis for lamellar colony refinement.Compressive testing at room temperature reveals that the Ti46 Al1.5 Cr8 Nb0.4 Ta alloy exhibits optimal compressive properties,achieving a compressive strength of 2,434 MPa and a compressive strain of 33.1%.The improvement of its properties is attributed to a combination of lamellar colony refinement,solid solution strengthening resulting from the incorporation of Ta element,and a reduction in the c/a of theγphase.展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected trans...The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected transmission electron microscopy and first-principles calculations,the underlying micromechanisms of Sc microalloying were revealed.Results show that the increase in strength of the AA7085-Sc alloy is mainly attributed to the decreased Al grain size and increased number density of both Al_(3)Sc@Al_(3)(Sc,Zr)core−shell nanoparticles and Sc-containingη_(p) and GP−η_(p) nanoprecipitates.Strong strain fields and evident electron transfer from Zr to the neighboring matrix Al atoms exist at the Al_(3)Sc@Al_(3)(Sc,Zr)/Al interface.The Sc doping in GP−η_(p) andη_(p) suppresses the GP−η_(p)→η_(p) transformation.Modified corrosion resistance of the AA7085-Sc alloy compared with AA7085 alloy is associated with the fine grain boundary precipitates ofη_(p)hases and narrow precipitation free zone.The reasons of property changes of AA7085 alloy after Sc microalloying are explored based on the multiscale microstructural characterization.展开更多
We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-gener...We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-generation recycled concrete aggregates(RCA)were used to analyze the regeneration potential of RAC after F-T cycles.Scanning electron microscopy was used to study the interfacial transition zone microstructure of RAC after F-T cycles.Results showed that adding 20%FA to RAC significantly enhanced its mechanical properties and frost resistance.Before the F-T cycles,the compressive strength of RAC with 20%FA reached 48.3 MPa,exceeding research strength target of 40 MPa.A majority of second-generation RCA with FA had been verified to attain class Ⅲ,which enabled their practical application in non-structural projects such as backfill trenches and road pavement.However,the second-generation RCA with 20%FA can achieve class Ⅱ,making it ideal for 40 MPa structural concrete.展开更多
The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu...The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.展开更多
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen...Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipmen...Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy.展开更多
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re...Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands.展开更多
The unique crystallographic lamellar microstructure(CLM) Ni-based superalloys fabricated by laser powder bed fusion(LPBF) exhibits excellent tensile properties.This study aims to investigate CLM's high-temperature...The unique crystallographic lamellar microstructure(CLM) Ni-based superalloys fabricated by laser powder bed fusion(LPBF) exhibits excellent tensile properties.This study aims to investigate CLM's high-temperature stress rupture behavior and use these findings to improve the additive manufacturing process.The result shows that the high temperature-induced intergranular fracture in <110> grain region is responsible for stress rupture failure under both conditions of 760 ℃/780 MPa and 980 ℃/260 MPa.Among them,the sub-grain boundary fracture occurs only under high temperature and low stress,980 ℃/260 MPa.Due to the severe intergranular fracture induced by stray grains,the stress rupture life is very low under both conditions.According to the finite element simulation,the formation of stray grains stems from the unstable heat flow within the melt pool during the process.In addition,the shorter stress rupture lifetime does not excite a more pronounced dislocation network around the γ′ phase.However,the deformation twins can still be activated inside the <110> grains,so it has excellent plasticity under both test conditions.Finally,this work indicates that the future optimization of CLM by LPBF should focus on eliminating of high-angle grain boundaries in <110> grains.展开更多
The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cool...The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cooling rates.The relationship between shrinkage porosities and microstructure characteristics was discussed in terms of temperature conditions,feeding channel characteristics,and feeding capacity.Further,the feeding behavior of the residual liquid phase in the solid skeleton was quantified by introducing permeability.Results show a strong correlation between the solid microstructure skeleton and shrinkage porosity characteristics.An increase in permeability corresponds to a declining number density of shrinkage porosities.This study aims to provide a more complete understanding how to reduce shrinkage porosities by controlling microstructure characteristics.展开更多
Low-density superalloys often exhibit low yield strength in the intermediate temperature range(300−650℃).To enhance yield performance in this range,the CALPHAD method was used to design a new Co-based superalloy.The ...Low-density superalloys often exhibit low yield strength in the intermediate temperature range(300−650℃).To enhance yield performance in this range,the CALPHAD method was used to design a new Co-based superalloy.The Co−30Ni−10Al−3V−6Ti−2Ta alloy,designed based onγʹphase dissolution temperature and phase fraction,was synthesized via arc melting and heat treatment.Phase transition temperatures,microstructure evolution,and hightemperature mechanical properties were characterized by differential scanning calorimetry,scanning electron microscopy,dual-beam TEM,and compression tests.Results show that the alloy has low density(8.15 g/cm^(3))and highγʹdissolution temperature(1234℃),along with unique yield strength retention from room temperature to 650℃.The yield strength anomaly(YSA)is attributed to high stacking fault energy and activation of the Kear−Wilsdorf locking mechanism,contributing to superior high-temperature stability of the alloy.The yield strength of this alloy outperforms other lowdensity Co-based superalloys in the temperature range of 23−650℃.展开更多
Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined sp...Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.展开更多
High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as not...High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.展开更多
基金National Key Research and Development Program of China(2021YFB3700801)。
文摘Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.
文摘Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm.
基金Key-Area Research and Development Program of Guangdong Province(2023B0909020004)Project of Innovation Research Team in Zhongshan(CXTD2023006)+1 种基金Natural Science Foundation of Guangdong Province(2023A1515011573)Zhongshan Social Welfare Science and Technology Research Project(2024B2022)。
文摘Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).
基金Funded by the National Key Research Program(No.2024-1129-954-112)National Natural Science Foundation of China(No.52372033)Guangxi Science and Technology Major Program(No.AA24263054)。
文摘In current research,Li_(2)O-Al_(2)O_(3)-SiO_(2)glass-ceramics were prepared by conventional meltquenching and subsequent heat treatment method.The effect of Al_(2)O_(3)content on microstructures,thermal properties,crystallization behaviours and mechanical properties were investigated.FTIR,Raman spectroscopy and nuclear magnetic resonance spectroscopy microstructure analysis showed that the silico-oxygen network was damaged,while the increase of[AlO_(4)]content repaired the glass network,and finally made the glass network have better connectivity,with the decrease of SiO_(2).The thermal analysis confirmed the increasing glass transition and crystallization temperatures from growing Al_(2)O_(3)content.In addition,different crystal phases can be precipitated in the glass matrix,such as LiAlSi_(4)O_(10),Li_(2)Si_(2)O_(5) in glass with low Al_(2)O_(3)content,the combination of Li_xAl_xSi_(1-x)O_(2),LiAlSi_(3)O_(8),Li_(2)SiO_(3)in glass with intermediate Al_(2)O_(3)content,and the combination of LiAlSi_(2)O_(6),SiO_(2)in glass with high Al_(2)O_(3)content.The hardness of as-prepared glass gradually increases with the increase of the Al_(2)O_(3)content.The Vickers hardness of the glass-ceramics is highly dependent on the Al_(2)O_(3)content in the glass and the heat treatment temperatures,reaching a maximum of 10.11 GPa.Scanning electron microscope images show that the crystals change from spherical to massive and finally to sheet.The change of glass structure,crystal phase and morphology is the main reason for the different mechanical properties.
基金Funded by the National Natural Science Foundation of China(Nos.52278269,52278268,52178264)Tianjin Outstanding Young Scholars Science Fund Project(No.22JCJQJC00020)Key Project of Tianjin Natural Science Foundation(No.23JCZDJC00430)。
文摘The effect of antibacterial adhesive on the biological corrosion resistance of mortar in seawater environment was studied by means of scanning electron microscope,thermogravimetric analysis,X-ray diffraction,Fourier transform infrared spectroscopy,and ultra-depth microscope.The results show that the antibacterial adhesive can effectively inhibit the growth of sulfur-oxidizing bacteria in seawater,hinder their metabolism to produce biological sulfate,and reduce the formation of destructive product gypsum.The mineral composition and thermal analysis showed that the peak value of plaster diffraction peak and the mass loss of plaster dehydration in antibacterial adhesive group were significantly lower than those in blank group(without protective coating group).In addition,the electric flux of chloride ions(>400 C)in the blank group of mortar samples was higher than that in the antibacterial adhesive group(<200 C),indicating that the antibacterial adhesive can effectively reduce the permeability of chloride ions in mortar,and thus hinder the Cl-erosion in seawater.
基金the financial support by the Major Science and Technology Achievement Transformation Project in Heilongjiang Province(No.ZC2023SH0075)the National Natural Science Foundation of China(Nos.52425401,U2441255,52474377,and 52371015)+1 种基金the Young Elite Scientists Sponsorship·Program by CAST(No.2021QNRC001)the Henan Provincial Key Research and Development&Promotion Special Program(No.251111231400)。
文摘The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepared by vacuum arc melting.The microstructure,mechanical properties,and related influencing mechanisms were systematically investigated.The results indicate that the solidification microstructure of the Ti46Al1.5Cr8Nb-xTa alloys comprises theγ-TiAl phase,α_(2)-Ti_(3)Al phase,and B2 phase.As the Ta content increases from 0.2 at.%to 1.0 at.%,the content ofα_(2)phase and B2 phase increases,while theγphase content decreases.Among them,the B2 phase shows the most pronounced change,being significantly refined,with its content increasing from 12.49%to 21.91%.In addition,the average size of the lamellar colony decreases from 160.65 to 94.44μm.The addition of the Ta element shifts the solidification path toward lower aluminum concentrations,leading to changes in phase content.The tantalum-induced increase in the B2 phase and enhanced supercooling at the solidification front provide the basis for lamellar colony refinement.Compressive testing at room temperature reveals that the Ti46 Al1.5 Cr8 Nb0.4 Ta alloy exhibits optimal compressive properties,achieving a compressive strength of 2,434 MPa and a compressive strain of 33.1%.The improvement of its properties is attributed to a combination of lamellar colony refinement,solid solution strengthening resulting from the incorporation of Ta element,and a reduction in the c/a of theγphase.
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金the support from the National Natural Science Foundation of China (Nos. U20A20274, 52061003)the Natural Science Foundation of Yunnan Province, China (No. 202301AT070209)the Science and Technology Major Project of Yunnan Province, China (No. 202102AG050017)。
文摘The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected transmission electron microscopy and first-principles calculations,the underlying micromechanisms of Sc microalloying were revealed.Results show that the increase in strength of the AA7085-Sc alloy is mainly attributed to the decreased Al grain size and increased number density of both Al_(3)Sc@Al_(3)(Sc,Zr)core−shell nanoparticles and Sc-containingη_(p) and GP−η_(p) nanoprecipitates.Strong strain fields and evident electron transfer from Zr to the neighboring matrix Al atoms exist at the Al_(3)Sc@Al_(3)(Sc,Zr)/Al interface.The Sc doping in GP−η_(p) andη_(p) suppresses the GP−η_(p)→η_(p) transformation.Modified corrosion resistance of the AA7085-Sc alloy compared with AA7085 alloy is associated with the fine grain boundary precipitates ofη_(p)hases and narrow precipitation free zone.The reasons of property changes of AA7085 alloy after Sc microalloying are explored based on the multiscale microstructural characterization.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20220626)the National Natural Science Foundation of China(No.52078068)+2 种基金Science and Technology Innovation Foundation of NIT(No.KCTD006)Jiangsu Marine Structure Service Performance Improvement Engineering Research CenterKey Laboratory of Jiangsu"Marine Floating Wind Power Technology and Equipment"。
文摘We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-generation recycled concrete aggregates(RCA)were used to analyze the regeneration potential of RAC after F-T cycles.Scanning electron microscopy was used to study the interfacial transition zone microstructure of RAC after F-T cycles.Results showed that adding 20%FA to RAC significantly enhanced its mechanical properties and frost resistance.Before the F-T cycles,the compressive strength of RAC with 20%FA reached 48.3 MPa,exceeding research strength target of 40 MPa.A majority of second-generation RCA with FA had been verified to attain class Ⅲ,which enabled their practical application in non-structural projects such as backfill trenches and road pavement.However,the second-generation RCA with 20%FA can achieve class Ⅱ,making it ideal for 40 MPa structural concrete.
基金financially supported by the Natural Science Foundation of Liaoning Province of China(2022-MS-109)the Key Research and Development Program of Liaoning Province(2023JH2/101800045)the Ministry of Science and Technology of the Peoples Republic of China(ZZ2021006).
文摘The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.
基金financially supported by the National Natural Science Foundation of China(52130109)。
文摘Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金supported by Major Science and Technology Projects in Fujian Province,China(No.2023HZ021005)State Key Laboratory of Powder Metallurgy,Central South University,ChinaFujian Key Laboratory of Rare-earth Functional Materials,China。
文摘Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy.
基金Funded by Natural Science Foundation of Guangxi(No.2025GXNSFBA069565)Guangxi Science and Technology Program(No.AD25069101)Guangxi Bagui Scholars Fund。
文摘Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands.
基金the financial support by the Project of Taihang Laboratory (No. A3023)Science Center for Gas Turbine Project (Grant No. P2022-CIV-002-001)。
文摘The unique crystallographic lamellar microstructure(CLM) Ni-based superalloys fabricated by laser powder bed fusion(LPBF) exhibits excellent tensile properties.This study aims to investigate CLM's high-temperature stress rupture behavior and use these findings to improve the additive manufacturing process.The result shows that the high temperature-induced intergranular fracture in <110> grain region is responsible for stress rupture failure under both conditions of 760 ℃/780 MPa and 980 ℃/260 MPa.Among them,the sub-grain boundary fracture occurs only under high temperature and low stress,980 ℃/260 MPa.Due to the severe intergranular fracture induced by stray grains,the stress rupture life is very low under both conditions.According to the finite element simulation,the formation of stray grains stems from the unstable heat flow within the melt pool during the process.In addition,the shorter stress rupture lifetime does not excite a more pronounced dislocation network around the γ′ phase.However,the deformation twins can still be activated inside the <110> grains,so it has excellent plasticity under both test conditions.Finally,this work indicates that the future optimization of CLM by LPBF should focus on eliminating of high-angle grain boundaries in <110> grains.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3701000)the National Natural Science Foundation of China(Nos.52471118,52101125,U2037601,and U21A2048)Young Elite Scientists Sponsorship Program by CAST,China(No.2022QNRC001)。
文摘The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cooling rates.The relationship between shrinkage porosities and microstructure characteristics was discussed in terms of temperature conditions,feeding channel characteristics,and feeding capacity.Further,the feeding behavior of the residual liquid phase in the solid skeleton was quantified by introducing permeability.Results show a strong correlation between the solid microstructure skeleton and shrinkage porosity characteristics.An increase in permeability corresponds to a declining number density of shrinkage porosities.This study aims to provide a more complete understanding how to reduce shrinkage porosities by controlling microstructure characteristics.
基金supported by the National Natural Science Foundation of China(Nos.51831007,52101135)the Shenzhen Science and Technology Program,China(No.SGDX20210823104002016)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2021B1515120071,JCYJ20220531095217039)。
文摘Low-density superalloys often exhibit low yield strength in the intermediate temperature range(300−650℃).To enhance yield performance in this range,the CALPHAD method was used to design a new Co-based superalloy.The Co−30Ni−10Al−3V−6Ti−2Ta alloy,designed based onγʹphase dissolution temperature and phase fraction,was synthesized via arc melting and heat treatment.Phase transition temperatures,microstructure evolution,and hightemperature mechanical properties were characterized by differential scanning calorimetry,scanning electron microscopy,dual-beam TEM,and compression tests.Results show that the alloy has low density(8.15 g/cm^(3))and highγʹdissolution temperature(1234℃),along with unique yield strength retention from room temperature to 650℃.The yield strength anomaly(YSA)is attributed to high stacking fault energy and activation of the Kear−Wilsdorf locking mechanism,contributing to superior high-temperature stability of the alloy.The yield strength of this alloy outperforms other lowdensity Co-based superalloys in the temperature range of 23−650℃.
基金supported by the National Key Research and Development Program of China(No.2024YFB3212901)National Natural Science Foundation of China(12072189)the Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University(No.YG2025ZD05)。
文摘Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.
基金supported by National Natural Science Foundation of China(Grant No.52171032)Hebei Natural Science Foundation(Grant No.E2023501002)Fundamental Research Funds for the Central Universities(Grant No.2024GFYD003)。
文摘High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.