期刊文献+
共找到8,635篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and Properties of Mg/Fe Dissimilar Metal Joints Fabricated by Magnetic Pulse Welding
1
作者 Xie Jilin Li Shimeng +3 位作者 Wang Yaping Liu Dongya Liu Xiaofang Chen Yuhua 《稀有金属材料与工程》 北大核心 2026年第1期67-77,共11页
Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively invest... Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm. 展开更多
关键词 magnetic pulse welding mechanical properties microstructure fracture morphology primary and secondary welding
原文传递
Al_(2)O_(3)Content Dependency on Microstructure,Crystallization Behavior and Mechanical Properties of Li_(2)O-Al_(2)O_(3)-SiO_(2)Glass-ceramics
2
作者 LI Danni CAI Yuyan +5 位作者 ZHENG Chi JIA Xuhe GUO Mengshuo ZHANG Jihong XIE Jun HAN Jianjun 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期72-83,共12页
In current research,Li_(2)O-Al_(2)O_(3)-SiO_(2)glass-ceramics were prepared by conventional meltquenching and subsequent heat treatment method.The effect of Al_(2)O_(3)content on microstructures,thermal properties,cry... In current research,Li_(2)O-Al_(2)O_(3)-SiO_(2)glass-ceramics were prepared by conventional meltquenching and subsequent heat treatment method.The effect of Al_(2)O_(3)content on microstructures,thermal properties,crystallization behaviours and mechanical properties were investigated.FTIR,Raman spectroscopy and nuclear magnetic resonance spectroscopy microstructure analysis showed that the silico-oxygen network was damaged,while the increase of[AlO_(4)]content repaired the glass network,and finally made the glass network have better connectivity,with the decrease of SiO_(2).The thermal analysis confirmed the increasing glass transition and crystallization temperatures from growing Al_(2)O_(3)content.In addition,different crystal phases can be precipitated in the glass matrix,such as LiAlSi_(4)O_(10),Li_(2)Si_(2)O_(5) in glass with low Al_(2)O_(3)content,the combination of Li_xAl_xSi_(1-x)O_(2),LiAlSi_(3)O_(8),Li_(2)SiO_(3)in glass with intermediate Al_(2)O_(3)content,and the combination of LiAlSi_(2)O_(6),SiO_(2)in glass with high Al_(2)O_(3)content.The hardness of as-prepared glass gradually increases with the increase of the Al_(2)O_(3)content.The Vickers hardness of the glass-ceramics is highly dependent on the Al_(2)O_(3)content in the glass and the heat treatment temperatures,reaching a maximum of 10.11 GPa.Scanning electron microscope images show that the crystals change from spherical to massive and finally to sheet.The change of glass structure,crystal phase and morphology is the main reason for the different mechanical properties. 展开更多
关键词 microstructure GLASS-CERAMICS CRYSTALLIZATION hardness
原文传递
From microstructure to performance optimization:Innovative applications of computer vision in materials science
3
作者 Chunyu Guo Xiangyu Tang +10 位作者 Yu’e Chen Changyou Gao Qinglin Shan Heyi Wei Xusheng Liu Chuncheng Lu Meixia Fu Enhui Wang Xinhong Liu Xinmei Hou Yanglong Hou 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期94-115,共22页
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear... The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects. 展开更多
关键词 microstructure deep learning computer vision performance prediction image generation
在线阅读 下载PDF
Basic Mechanical Properties and Microstructure of Sustainable Recycled Coral Aggregate Concrete
4
作者 WANG Lei LU Jiahui +5 位作者 ZHANG Jiwang YI Jin ZHU Dexiang HUANG Dongming QIN Yan LI Yajie 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期217-226,共10页
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re... Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands. 展开更多
关键词 recycled coral aggregate sustainable concrete mechanical properties microstructure interfacial transition zone
原文传递
Advancements in titanium nanocomposites:Microstructure and fretting wear resistance via spark plasma sintering
5
作者 Basant Lal Abhijit Dey 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期265-281,共17页
This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C s... This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C significantly improved the mechanical properties, including a notable 18.2% increase in hardness(HV 332). Fretting wear tests against 316L stainless steel(SS316L) balls demonstrated a 20wt%–22wt% reduction in wear volume in the Ti6Al4V/Ti C composites compared with the monolithic alloy. Microstructural analysis revealed that Ti C reinforcement controlled the grain orientation and reduced the β-phase content, which contributed to enhanced mechanical properties. The monolithic alloy exhibited a Widmanstätten lamellar microstructure, while increasing the Ti C content modified the wear mechanisms from ploughing and adhesion(0–0.5wt%) to pitting and abrasion(1wt%–2.5wt%). At higher reinforcement levels, the formation of a robust oxide layer through tribo-oxide treatment effectively reduced the wear volume by minimizing the abrasive effects and plastic deformation. This study highlights the potential of SPS-mediated Ti C reinforcement as a transformative approach for improving the performance of Ti6Al4V alloys, paving the way for advanced medical applications. 展开更多
关键词 Ti6Al4V alloy TiC particle microstructure wear mechanism spark plasma sintering
在线阅读 下载PDF
Influence of Microstructures on Hot Deformation Behavior and Microstructure Evolution of FGH4113A Superalloy
6
作者 Yang Jinlong Xiong Jiangying +3 位作者 Yin Chao Cheng Junyi Guo Jianzheng Feng Ganjiang 《稀有金属材料与工程》 北大核心 2025年第4期898-907,共10页
The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a... The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained. 展开更多
关键词 FGH4113A superalloy initial microstructure hot deformation behavior microstructure evolution
原文传递
Macro-mechanics and Microstructure of Nanomaterial-modified Geopolymer Concrete: A Comprehensive Review 被引量:1
7
作者 WANG Tao FAN Xiangqian +1 位作者 GAO Changsheng QU Chiyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期204-214,共11页
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu... We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete. 展开更多
关键词 NANOMATERIALS low carbon geopolymer concrete macro-mechanics microstructure
原文传递
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC 被引量:1
8
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type microstructure wear and corrosion resistance
原文传递
Effect of Hot Working on Microstructures and Mechanical Properties of Gravity-Cast Al-8.3Zn-3.3Cu-2.2Mg HighStrength Aluminum Alloy 被引量:2
9
作者 Qi Yushi Jin Yu +5 位作者 Wei Fangming Du Lanjun Ren Yan Liang Xueqian Chen Gang Du Zhiming 《稀有金属材料与工程》 北大核心 2025年第2期327-336,共10页
The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal ho... The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal hot extrusion parameters are determined as ingot initial temperature of 380°C and extrusion speed of 3 mm/s.The hot-extruded aluminum alloy after T6 heat treatment presents superior mechanical properties with yield strength of 519.6 MPa,ultimate tensile strength of 582.1 MPa,and elongation of 11.0%.Compared with the properties of gravity-cast and liquid-forged alloys,the yield strength of hot-extruded alloy increases by 30.8%and 4.9%,and the ultimate tensile strength improves by 43.5%and 10.2%,respectively.The significant improvement in tensile strength of the hot-extruded alloys is attributed to the elimination of casting defects and the refinement of matrix grain and eutectic phases.In addition,the hot-extruded alloy demonstrates superior plasticity compared with the liquid-forged alloy.This is because severe plastic deformation occurs during hot extrusion,which effectively breaks and disperses the eutectic phases,facilitating the dissolution and precipitation of the second phases and inhibiting the microcrack initiation. 展开更多
关键词 Al-Zn-Cu-Mg alloy hot extrusion liquid forging mechanical properties microstructure
原文传递
Effects of Cerium-Rich Rare Earth and Al-Ti-B Composite Addition on Microstructure and Mechanical Properties of Al-Mg-Si Alloys 被引量:1
10
作者 Chong Yufan Du Zhaoxin +5 位作者 Gong Tianhao Sun Baoan Pan Zheru Qi Lele Xie Chengcheng Cheng Jun 《稀有金属材料与工程》 北大核心 2025年第1期50-61,共12页
Modification of 6061 aluminum alloy was conducted through composite addition of cerium-rich rare earths and Al-Ti-B.Results show that the composite addition of Al-Ti-B and Ce/La element at a specific ratio notably pro... Modification of 6061 aluminum alloy was conducted through composite addition of cerium-rich rare earths and Al-Ti-B.Results show that the composite addition of Al-Ti-B and Ce/La element at a specific ratio notably promotes the refinement of the alloy's grains.Ce and La elements are combined with Si and other elements to form rare earth phases,improving the morphology and distribution of precipitates and mitigating the adverse effects ofβ-Fe phases on the microstructure and mechanical properties of alloy.However,excessive rare earth content poses challenges;it not only leads to a decrease in Mg-Si strengthening phase by binding with Si but also promotes the formation of larger or numerous rare earth phases that may act as initiation points for cracks,thereby impeding the improvement of the structure and performance of alloy.The composite addition of cerium-rich rare earths and Al-Ti-B not only preserves the strength of the alloy but also significantly enhances the plasticity of the 6061 as-cast alloy.At a composite addition ratio of Al-Ti-B:RE=2:1,the newly developed 6061-RE aluminum alloy exhibits increased average elongation by 50%and 45%in its as-cast and homogenized states,respectively,compared to the baseline 6061 alloy,facilitating subsequent deformation processing.After solution treatment at 540℃for 1 h and aging at 180℃for 5 h,the average ultimate tensile strength and yield strength of 6061-RE alloys reach 313.2 and 283.1 MPa,increased by 12.3%and 14.5%compared with those of the original alloy,respectively,and the average elongation is improved by 41%. 展开更多
关键词 rare earth alloy Al-Mg-Si alloy cerium-rich rare earth mechanical property microstructure
原文传递
Effect of Different Heat Treatments on Surface Microstructures and Anodic Oxide Film Structures of Al-5.6Mg Alloy Sheets 被引量:1
11
作者 Jiang Zhongyu Xu Guangming 《稀有金属材料与工程》 北大核心 2025年第9期2205-2210,共6页
The effect of different intermediate annealing heat treatments on the surface microstructures and anodic oxide film structures of rolled Al-5.6Mg sheets was studied.The results show that when the continuous annealing ... The effect of different intermediate annealing heat treatments on the surface microstructures and anodic oxide film structures of rolled Al-5.6Mg sheets was studied.The results show that when the continuous annealing is used to control microstructures of the sheets instead of the static state annealing in the intermediate annealing process,the surface grain size of the sheets can be reduced by about 65.7%,and the size of the Mg precipitation phase(Mg_(2)Al_(3))can be reduced by about 67%.Under the combined influence of grain size,precipitation phase,and texture,the highest glossiness can be obtained,which is attributed to continuous intermediate annealing and stabilization annealing at low temperature.The uniform grain and precipitation structures is beneficial to reducing the inhomogeneous dissolution of the oxide film and to obtain the anodic oxide film with uniform thickness and high glossiness. 展开更多
关键词 heat treatment ANODIZING Al-Mg alloy microstructureS
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
12
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy 被引量:2
13
作者 X.W.Shang Z.G.Lu +1 位作者 R.P.Guo L.Xu 《Acta Metallurgica Sinica(English Letters)》 2025年第4期627-641,共15页
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep... Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 展开更多
关键词 Powder metallurgy Hot isostatic pressing Titanium alloy Mechanical properties microstructure evolution
原文传递
Microstructure deterioration of sandstone under freeze-thaw cycles using CT technology:The effects of different water immersion conditions 被引量:2
14
作者 Bei Qiu Lifeng Fan Xiuli Du 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1599-1611,共13页
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical... In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates. 展开更多
关键词 Freeze-thaw cycles Water immersion condition Computed tomography(CT) microstructure deterioration SANDSTONE
在线阅读 下载PDF
Solidification modes and delta-ferrite of two types of 316L stainless steels:a combination of as-cast microstructure and HT-CLSM research 被引量:2
15
作者 Yang Wang Chao Chen +5 位作者 Xiao-yu Yang Zheng-rui Zhang Jian Wang Zhou Li Lei Chen Wang-zhong Mu 《Journal of Iron and Steel Research International》 2025年第2期426-436,共11页
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ... In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ). 展开更多
关键词 316L austenitic stainless steel As-cast microstructure High-temperature confocal laser scanning microscopy Solidification mode FERRITE Characterization
原文传递
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:2
16
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys microstructure evolution Mechanical properties
原文传递
Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays 被引量:2
17
作者 Shuli Wang Xuemin Kong +7 位作者 Siting Cai Yunshu Luo Yuxuan Gu Xiaotong Fan Guolong Chen Xiao Yang Zhong Chen Yue Lin 《Chinese Chemical Letters》 2025年第8期554-559,共6页
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m... Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent. 展开更多
关键词 SOLVENT Perovskite nanocrystal Electrohydrodynamic inkjet printing Color conversion microstructures arrays Micro-LED display
原文传递
Mechanical properties and microstructure evolution of 1800 MPa grade low alloy ultrahigh strength steel during quenching and tempering process 被引量:1
18
作者 Tong Wang Yang-xin Wang +2 位作者 Chun-dong Hu Peng-min Cao Han Dong 《Journal of Iron and Steel Research International》 2025年第6期1691-1700,共10页
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci... The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control. 展开更多
关键词 STRENGTH TOUGHNESS CARBIDE microstructure Evolution mechanism
原文传递
Influence of minor cerium addition on microstructure and fluidity of as-cast Al-Cu-Mn-Mg alloy 被引量:1
19
作者 Yishan Wang Yu Bai +3 位作者 Kaixi Jiang Wenxue Fan Puxuan Wang Hai Hao 《Journal of Rare Earths》 2025年第2期377-383,I0006,共8页
Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.Howeve... Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce. 展开更多
关键词 Al-Cu-Mn-Mg alloy Rare earths Ce addition microstructure FLUIDITY
原文传递
Characterization and correlation of engineering properties with microstructure in peanuts:A microscopic to macroscopic analysis 被引量:1
20
作者 Fei Xiang Zhenyuan Li +9 位作者 Yichen Zheng Caixia Ding Benu Adhikari Xiaojie Ma Xuebing Xu Jinjin Zhu Bello Zaki Abubakar Aimin Shi Hui Hu Qiang Wang 《Journal of Integrative Agriculture》 2025年第1期339-352,共14页
Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across t... Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across the world remains relatively limited,impeding the comprehensive evaluation of peanut quality and hindering the industry development on a global scale.This study aimed to compare and analyze the apparent morphology,microstructure,single-cell structure,engineering and mechanical properties,as well as major nutrient contents of peanut kernels from 10 different cultivars representing major peanut-producing countries.The surface and cross-section microstructure of the peanut kernels exhibited a dense“blocky”appearance with a distinct cellular structure.The lipid droplets were predominantly spherical with a regular distribution within the cells.The single-cell structure of the kernels from these 10 peanut cultivars demonstrated varying morphologies and dimensions,which exhibited correlations with their mechanical and engineering properties.Furthermore,the mass loss versus temperature profiles of the peanut kernels revealed five distinct stages,corresponding to moisture loss,volatile loss,protein denaturation,and the degradation of various biomacromolecules.Variations were also observed in the lipid,protein,and sucrose contents,texture,bulk density,true density,porosity,geometric mean diameter,and sphericity among the diferent peanut varieties.This study establishes relationships and correlations among microstructure,engineering properties,and nutritional composition of commonly grown peanut varieties in major peanut-processing countries.The findings provide valuable insights into peanut quality evaluation,empowering the peanut industry to enhance their processing and product development efforts. 展开更多
关键词 peanut kernels apparent morphology microstructure engineering properties mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部