期刊文献+
共找到138,047篇文章
< 1 2 250 >
每页显示 20 50 100
Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS_(2) in high-resolution transmission electron microscopy 被引量:1
1
作者 Yu Meng Shuya Wang +5 位作者 Xibiao Ren Han Xue Xuejun Yue Chuanhong Jin Shanggang Lin Fang Lin 《Chinese Physics B》 2025年第1期162-170,共9页
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co... High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability. 展开更多
关键词 aberration measurement high-resolution transmission electron microscopy feature-extraction networks exit-wave reconstruction monolayer MoS_(2)
原文传递
Probing Interfacial Nanostructures of Electrochemical Energy Storage Systems by In-Situ Transmission Electron Microscopy
2
作者 Guisheng Liang Chang Zhang +10 位作者 Liting Yang Yihao Liu Minmin Liu Xuhui Xiong Chendi Yang Xiaowei Lv Wenbin You Ke Pei Chuan-Jian Zhong Han-Wen Cheng Renchao Che 《Nano-Micro Letters》 2025年第10期388-416,共29页
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth unders... The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems. 展开更多
关键词 In-situ transmission electron microscopy Electrochemical energy storage Interfacial nanostructures Batteries ELECTRODES NANOMATERIALS
在线阅读 下载PDF
Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors 被引量:1
3
作者 Xiaomei Wu Xiaoxing Ke Manling Sui 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期67-81,共15页
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel... Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material. 展开更多
关键词 organic–inorganic hybrid perovskite solar cell materials energy materials scanning electron microscopy transmission electron microscopy irradiation damage
在线阅读 下载PDF
Mssbauer and electron microscopy study of martensitic transformations in an Fe-Mn-Mo alloy
4
作者 T.Kirindi U.Sari M.Kurt 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期448-452,共5页
The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron m... The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite. 展开更多
关键词 Fe-Mn alloy MOLYBDENUM martensitic transformation scanning electron microscopy(SEM) transmission electron microscopy(TEM) Mossbauer spectroscopy
在线阅读 下载PDF
Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy
5
作者 王浪 李超凡 +3 位作者 RAN Maojin YUAN Manman 胡执一 LI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期877-887,共11页
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme... The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles. 展开更多
关键词 bismuth nanoparticles crystal growth transmission electron microscopy in-situ electron microscopy
原文传递
Scanning Electron Microscopy of Antennae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) 被引量:6
6
作者 张洁 杨茂发 《Zoological Research》 CAS CSCD 北大核心 2008年第1期108-112,共5页
The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the ... The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the female was 1050μm. Six types of sensillae on the antenna were observed, viz. chaetica (Ch), trichoidea (Tr), basiconica (Ba), cavity (Ca), styloid (St) and circumfila (Ci) on the antennae of A. aphidimyza. Sensillae Ch had a long external-process, with a base surrounded by membranous sockets and a length of about 67.5 μm. Sensillae Tr were distally curved and inserted into a depression, 61.0μm long. Sensillae Ba were peg-like and 4.7μm long on the antennae. Sensillae Ca were pit-like in appearance and the diameter of the pit was 1.2μm. Sensilla St was found on the second sub-segment flagellum of the male antennae. The length of the sensilla was about 21 μm and the diameter was 1.5μm. The circurnfila, which are a unique type of sensilla found only on cecidomyiid antennae, formed loops around each of the antennal sub-segments, and were attached to the surface by a series of stalks. Sensilla St was only present on male antenna. The number of Ba and Tr was almost the same in both sexes. There were more Sensilla Ca on the male antenna than on the female, while there was more Ch on the female. 展开更多
关键词 Aphidoletes aphidimyza Scanning electron microscopy ANTENNA Sensillae ULTRASTRUCTURE
在线阅读 下载PDF
Electron Microscopy and Spectroscopy Investigation of Atomic, Electronic, and Phonon Structures of NdNiO_(2)/SrTiO_(3) Interface
7
作者 Yuan Yin Mei Wu +9 位作者 Xiang Ding Peiyi He Qize Li Xiaowen Zhang Ruixue Zhu Ruilin Mao Xiaoyue Gao Ruochen Shi Liang Qiao Peng Gao 《Chinese Physics Letters》 2025年第4期130-141,共12页
The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus... The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface. 展开更多
关键词 atomic structure phonon structure electron microscopy electronic structure SPECTROSCOPY NdNiO SrTiO interface thin films superconducting cupratesprovide
原文传递
Progress and Prospect of Cryogenic Micro-and Nanomechanical In-Situ Characterization Techniques Based on Electron Microscopy
8
作者 Langlang Feng Keqiang Li Guangjian Peng 《Acta Mechanica Solida Sinica》 2025年第2期229-239,共11页
The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical character... The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics. 展开更多
关键词 electron microscopy Micro-and nanomechanics Cryomechanical characterization In-Situ characterization
原文传递
Influence of Radio-Frequency Voltage on Electron Spin Resonance Spectroscopy in Scanning Tunneling Microscopy
9
作者 Jiaan Cao Lyuzhou Ye +1 位作者 Rui-Xue Xu Xiao Zheng 《Chinese Journal of Chemical Physics》 2025年第4期375-381,I0104,共8页
Over the last decade,the integra-tion of scanning tunneling mi-croscopy(STM)and electron spin resonance(ESR)spectroscopy has emerged as a powerful tool for measuring spin states of surface-adsorbed molecules.The radio... Over the last decade,the integra-tion of scanning tunneling mi-croscopy(STM)and electron spin resonance(ESR)spectroscopy has emerged as a powerful tool for measuring spin states of surface-adsorbed molecules.The radio-fre-quency voltage is a key physical quantity that influences STM-ESR spectra.However,the specific effect of radio-frequency voltage on the real-time electric current associated with STM-ESR sig-nal remains unclear.In this work,we employ the hierarchical equations of motion method to simulate the STM-ESR spectra of a single spin-1/2 surface-adsorbed molecule and track the temporal evolution of the electric current,thereby elucidating how the radio-frequency volt-age influences the features of STM-ESR spectra,the real-time electric current,and the char-acteristic frequencies conveyed by the electric current.These theoretical insights facilitate a deeper comprehension of experimental phenomena. 展开更多
关键词 electron spin resonance Scanning tunneling microscopy Radio-frequency volt-age Real-time electric current
在线阅读 下载PDF
Application of electron microscopy in gastroenterology
10
作者 Masaya Iwamuro Haruo Urata +1 位作者 Takehiro Tanaka Hiroyuki Okada 《World Journal of Gastrointestinal Pathophysiology》 2022年第2期41-49,共9页
Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also be... Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science. 展开更多
关键词 Transmission electron microscopy Scanning electron microscopy Energydispersive X-ray spectrometry Gastrointestinal disease gastroesophageal reflux disease PATHOGENS
暂未订购
Dimensionality-Dependent Hot Electrons Diffusion in Gold Nanoplates Visualized by Transient Absorption Microscopy
11
作者 Danli Shi Jingyi Yang +4 位作者 Minjie Li Jianchang Lv Xi Liu Ao Liu Yan Wan 《Chinese Journal of Chemical Physics》 2025年第5期641-648,I0095-I0098,I0148,I0149,共14页
The gold nano-plates(Au NPLs)have been extensively studied for their high quality factor as mechanical resonators.But it remains still unclear how the thickness and morphology of Au NPLs affect the hot electron diffus... The gold nano-plates(Au NPLs)have been extensively studied for their high quality factor as mechanical resonators.But it remains still unclear how the thickness and morphology of Au NPLs affect the hot electron diffusion.Here we have employed transient absorption microscopy to gain spatiotemporal imaging of the hot electron diffusion in Au NPLs.Au NPLs of varying thickness over 200 nm were synthesized.It was found that the hot electron diffusion of Au NPL excited at the boundary is obviously faster than that excited at the internal surface.And thinner Au NPLs exhibit a faster hot electron diffusion rate compared to thicker Au NPLs.Because the time constant of hot electron cooling(electron-phonon coupling)is independent of the excited position and thickness of Au NPLs,the effect of electron-phonon coupling on hot electron diffusion should be ruled out.So the hot electron diffusion rate is highly dimensionality-dependent.The quasi-one-dimensional diffusion along the boundary of nanoplate has the fastest rate of 50 cm^(2)/s,and the three-dimensional diffusion has the slowest rate of 22 cm^(2)/s.The fundamental investigation on the hot electrons transport property of Au NPLs offers a new insight for designing metal-based optoelectronic devices. 展开更多
关键词 Metal nanomaterials Hot electron transport Transient absorption
在线阅读 下载PDF
Ultrafast photoemission electron microscopy:A multidimensional probe of nonequilibrium physics
12
作者 戴亚南 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期24-57,共34页
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact... Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics. 展开更多
关键词 ultrafast photoemission electron microscopy ultrafast momentum microscopy excited state physics
原文传递
Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques
13
作者 Zhang Yue-Fei Wang Li +6 位作者 R.Heiderhoff A.K.Geinzer Wei Bin Ji Yuan Han Xiao-Dong L.J.Balk Zhang Ze 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期374-379,共6页
The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based t... The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the A1N sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3w method. A thermal conductivity of 308 W/m-K within grains corresponding to that of high-purity single crystal A1N is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. 展开更多
关键词 thermal conductivity A1N ceramics scanning thermal microscopy scanning electronmicroscopy
原文传递
A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels 被引量:3
14
作者 Albin Stormvinter Peter Hedstrm Annika Borgenstam 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第4期373-379,共7页
The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope. It is found that the martensiti... The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope. It is found that the martensitic substructure changes from consisting mostly of transformation twins for 1.20 mass% carbon (C) steel to both transformation twins and planar defects on {101}M for 1.67 mass% C steel. In the 1.67 mass% C steel it is further found that small martensite units have a rather homogeneous substructure, while large martensite units are more inhomogeneous. In addition, the martensite units in both steels are frequently found to be of zigzag patterns and have distinct crystallographic relationships with neighboring martensite units, e.g. kink or wedge couplings. Based on the present findings the development of martensite in high-carbon low alloy steels is discussed and a schematic of the martensite formation is presented. Moreover, whether the schematic view can be applied to plate martensite formation in general, is discussed. 展开更多
关键词 Transmission electron microscopy High-carbon low alloy steel Plate martensite
原文传递
A review of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory 被引量:4
15
作者 Xin Yang Chen Luo +7 位作者 Xiyue Tian Fang Liang Yin Xia Xinqian Chen Chaolun Wang Steve Xin Liang Xing Wu Junhao Chu 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期62-76,共15页
Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research i... Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed. 展开更多
关键词 MEMORY transmission electron microscopy in situ characterization PACKAGE RELIABILITY
在线阅读 下载PDF
Transmission Electron Microscopy as a Powerful Tool for Investigating Lithium-ion Battery Materials 被引量:2
16
作者 LIN Cong LI Jian-Yuan +1 位作者 WANG Chong-Min PAN Feng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第12期2015-2019,共5页
Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigati... Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development. 展开更多
关键词 transmission electron microscopy lithium-ion batteries STRUCTURES PROPERTIES
在线阅读 下载PDF
Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries 被引量:2
17
作者 Yu-Xin Tong Qing-Hua Zhang Lin Gu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期23-34,共12页
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H... Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed. 展开更多
关键词 scanning transmission electron microscopy high angle annular dark field annular bright field lithium-ion batteries
原文传递
Lattice Distortion Analysis Directly from High Resolution Transmission Electron Microscopy Images —the LADIA Program Package 被引量:2
18
作者 Y.Rau, N.Y.Jin-Phillipp and F.PhillippMax-Planck-Institut fiir Metallforschung, Heisenbergstrasse 1, Stuttgart, D-70569, Germany 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期135-138,共4页
Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationshi... Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%. 展开更多
关键词 High-resolution transmission electron microscopy Distortion analysis
在线阅读 下载PDF
Comparison of scanning electron microscopy findings regarding biofilm colonization with microbiological results in nasolacrimal stents for external, endoscopic and transcanalicular dacryocystorhinostomy 被引量:1
19
作者 Melike Balikoglu-Yilmaz Tolga Yilmaz +4 位作者 Sule Cetinel Umit Taskin Ayse Banu Esen Muhittin Taskapili Timur Kose 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2014年第3期534-540,共7页
AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidi... AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents. 展开更多
关键词 biofilms nasolacrimal duct obstruction EPIPHORA DACRYOCYSTITIS scanning electron microscopy
原文传递
Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study 被引量:5
20
作者 Jun Sang Yoo Seok-Woo Chang +8 位作者 So Ram Oh Hiran Perinpanayagam Sang-Min Lim Yeon-Jee Yoo Yeo-Rok Oh Sang-Bin Woo Seung-Hyun Han Qiang Zhu Kee-Yeon Kum 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第4期227-232,共6页
The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted huma... The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization. 展开更多
关键词 bacterial entombment intratubular mineralization orthograde canal obturation scanning electron microscopy tag-like structure
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部