期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles 被引量:27
1
作者 李杰林 周科平 +1 位作者 刘伟杰 邓红卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2997-3003,共7页
In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonan... In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually. 展开更多
关键词 nuclear magnetic resonance (NMR) freeze-thaw cycles deterioration of rocks microscopic structure fractal dimension
在线阅读 下载PDF
Microscopic Structure of Rabbit Hair
2
作者 郭天芬 王欣荣 +1 位作者 李维红 牛春娥 《Agricultural Science & Technology》 CAS 2012年第12期2585-2588,2606,共5页
[Objective] The paper was to explore the microscopic structure of rabbit hair. [Method] Single rabbit hair with typical features was selected to observe its mi- croscopic structure from tip to root, and its fiber diam... [Objective] The paper was to explore the microscopic structure of rabbit hair. [Method] Single rabbit hair with typical features was selected to observe its mi- croscopic structure from tip to root, and its fiber diameter was also measured. [Result] The rabbit hair tip was constituted by scale layer and cortical layer, without medullary layer; the middle part was generally constituted by scale layer, cortical layer and medullary layer; the root had no medullary layer, and the scale layer was wheatear-shaped. This was the property of rabbit hair, which could be used for comparative studies with other animal fiber and species identification. Rabbit hair had developed medullary layer, and fiber diameter was positively related to column number of medullary cavity. The hair generally was single column, and coarse hair was multi-column. Single rabbit hair was the finest in the tip, coarse in the middle and tapering in the root. The diameter difference of various parts was large, and the ex- ternal growth characteristics was spindle-shaped. [Conclusion] Using biological micro- scope method to identify different animal fur and product species is more objective and simple. 展开更多
关键词 RABBIT HAIR microscopic structure Average diameter
在线阅读 下载PDF
Microscopic Structures of Endosperms Before and After Gelatinization in Rice Varieties with Varied Grain Quality 被引量:1
3
作者 YANGZe-min WANGWei-jin +3 位作者 LANSheng-yin XUZhen-xiu ZHOUZhu-qing WA 《Agricultural Sciences in China》 CAS CSCD 2003年第1期113-118,F003,T002,共8页
The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelat... The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelatinization varied in different parts of the grain and in different varieties under the same experimental conditions. The gelatinization of dorsal side was the most complete. Its cells were decomposed totally into puff-like or flocculent materials. The ventral side gelatinized less thoroughly, appearing agglomerate and some cell frames were still visible. The middle part gelatinized most incompletely and the cells were still integrated. Evident differences in gelatinization were observed among different varieties, the dorsal, ventral and middle parts of high quality varieties gelatinized more thoroughly than those of the corresponding parts of low quality varieties respectively. An obvious concavity often appeared in the middle of the cross-section of the low quality grains while the cross-section of high quality grains was normally flat. The same phenomenon was noted when comparing the early maturing indica rice and the late maturing indica rice. Varietal difference of gelatinization in dorsal sides was not as distinct as in middle parts and ventral sides. The difference among dorsal side, middle part and ventral side in gelatinization was greater in low quality grains than that of high quality grains. In addition, a lot of ruptured cells were observed in the cross-section of high quality rice, while few of them could be found in the low quality rice. Apparently, the number of ruptured cells is positively correlated with rice quality. Quality of rice grain also has positive correlation with the rate of water absorption and extension. High rates of water absorption and extension lead to better gelatinization of rice grain, and hence indicate good quality. 展开更多
关键词 Indica rice Grain quality GELATINIZATION microscopic structure
在线阅读 下载PDF
Effects of Different Flue-curing Technologies on Microscopic Structure of Flue-cured Tobacco Leaves 被引量:1
4
作者 Guomin CUI Bojun WANG +4 位作者 Rongchun LI Anding XU Yiyin CHEN Chao YANG Min PU 《Agricultural Biotechnology》 CAS 2014年第2期28-34,共7页
[Objective] This study aimed to compare the effects of Chinese quality-improving fragrunce-increasing tobacco flue-curing technology, Chinese three- stage tobaeeo flue-curing technology and Zimbabwean tobaceo flue-eur... [Objective] This study aimed to compare the effects of Chinese quality-improving fragrunce-increasing tobacco flue-curing technology, Chinese three- stage tobaeeo flue-curing technology and Zimbabwean tobaceo flue-euring technology on microscopie structure of flue-cured tobacco leaves to provide theoretical basis for tobacco flue-curing. [ Method ] Middle leaves of tobacco cultivar K326 were collected in Pengshui County of Chongqing City for flue-curing experiment using three flue-curing technologies. Leaf samples were collected regularly in the flue-curing process, to investigate the microscopic structure of flue-cured tobaceo leaves. [ Result] During three flue-curing processes, leaves, palisade tissues and sponge tissues shrank gradually. Three flue-euring processes exhibited significant differ- ences in the peak of tissue shrinkage : microscopic structure of flue-cured tobacco leaves in Chinese three-stage tobacco flue-curing process shrank earliest, follower by Chinese quality-improving fragrance-increasing tobacco flue-curing process; flue-eured tobacco leaves in Zimbabwean tobacco flue-curing process presented the latest shrinkage. At 84 h post-curing, leaf thickness in three flue-curing processes showed a descend order of Chinese three-stage tobacco flue-curing process 〉 Chinese quality-improving fragrance-increasing tobacco flue-curing process 〉 Zimbabwean tobacco flue-curing process. Upper and lower epidermal cells in Zimb- abwean tobacco flue-curing process ruptured earlier than other two flue-curing processes; eventually, the majority of cells ruptured and mixed with palisade tissues and sponge tissues. In Chinese quality-improving fragranee-increasing tobacco flue-curing process, only a small number of epidermal cells in dried leaves ruptured. Among three flue-curing technologies, Zimbabwean tobacco flue-curing technology exhibited the greatest damage to epidermal cells, followed by Chinese three-stage tobaceo flue-curing technology; Chinese quality-improving fragrance-increasing tobacco flue-curing technology had the minimum damage to epidermal cells. Mese- phyll cross-section exhibited significant morphological changes in stomata. To be specific, at 0 - 12 h post-curing, stomata of tobacco leaves closed with slightly prominent stamatal apparatuses on upper and lower epidermis; at 24 -72 h post-curing, stomata of tobaceo leaves changed gradually from opening to closure with significantly prominent stomatal apparatuses on upper and lower epidermis; at 84 h post-curing, stomata of tobacco leaves closed, and the majority of stomatal appa- ratuses were significantly prominent. In Chinese quality-improving fragrance-increasing tobacco flue-curing process, only a small number of epidermal ceils ruptured at 84 h pest-flue-curing; palisade tissues and sponge tissues shrank almost simultaneously. Significant gaps were observed between palisade tissues and between pal- isade tissues and sponge tissues. Chinese quality-improving fragrance-increasing tobacco flue-curing technology exhibited lower disorder level compared with other two flue-curing technologies. [ Conclusion] Chinese quality-improving fragrance-increasing tobacco flue-curlng technology was conducive to maintaining the micro- scopic structure integrity of flue-cured tobacco leaves and obtaining high-quality flue-cured tobacco leaves. 展开更多
关键词 Flue-cured tobacco leaves Flue-curing technologies microscopic structure
在线阅读 下载PDF
Data-driven predictive model of coal permeability based on microscopic fracture structure characterization
5
作者 Tianhao Yan Xiaomeng Xu +4 位作者 Jiafeng Liu Yihuai Zhang Muhammad Arif Xiaowei Xu Qiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4476-4489,共14页
Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent he... Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent heterogeneity and complex internal structure of coal,a well-established method for predicting permeability based on microscopic fracture structures remains elusive.This paper presents a novel integrated approach that leverages the intrinsic relationship between microscopic fracture structure and permeability to construct a predictive model for coal permeability.The proposed framework encompasses data generation through the integration of three-dimensional(3D)digital core analysis and numerical simulations,followed by data-driven modeling via machine learning(ML)techniques.Key data-driven strategies,including feature selection and hyperparameter tuning,are employed to improve model performance.We propose and evaluate twelve data-driven models,including multilayer perceptron(MLP),random forest(RF),and hybrid methods.The results demonstrate that the ML model based on the RF algorithm achieves the highest accuracy and best generalization capability in predicting permeability.This method enables rapid estimation of coal permeability by inputting two-dimensional(2D)computed tomography images or parameters of the microscopic fracture structure,thereby providing an accurate and efficient means of permeability prediction. 展开更多
关键词 microscopic fracture structure Lattice Boltzmann method Machine learning Coal permeability Predictive model
在线阅读 下载PDF
The Effect of EMR on the Early Microstructure of Polymer Magnesium Phosphate Cement Composites Based on NMR
6
作者 YANG Tianxia QIAO Hongxia +2 位作者 LUAN Shuai SHANG Minggang LU Chenggong 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1716-1738,共23页
We considered adding different amounts(1%,2%,3%,and 4%)of EMR to prepare manganese residue polymer magnesium phosphate cement composite(EMR-PMPC).The influence mechanism of EMR doping on the early macroscopic and micr... We considered adding different amounts(1%,2%,3%,and 4%)of EMR to prepare manganese residue polymer magnesium phosphate cement composite(EMR-PMPC).The influence mechanism of EMR doping on the early macroscopic and microscopic pore structure properties of composites was studied by combining macroscopic and microscopic testing methods.The experimental results show that the addition of EMR can improve the working performance of the slurry and enhance the strength in the later stage,the 28 d compressive strength value of the slurry doped with EMR can reach 49.5 MPa.The Mn element and NH4_(+)^(-)N in EMR react with MgO in the raw material to produce Struvite and Mn(OH)_(2)and Mn_(3)(PO_(4))·6H_(2)O gel,the hydration products coexist with each other and lap each other to form a dense microfine structure and effectively refine the pores.The hydration process consists of five stages,mainly concentrated in the first 10 h or less to exothermic mainly,infrared spectral absorption band is mainly composed of O-H bond,H-O-H bond,PO_(4)bond and metal oxygen bond 3 parts,EMR makes the wave number of the absorption band from the ground wave number to the high wave number.EMR doping T_(2)spectral relaxation time will lag behind,the pore size distribution changes.The total porosity and bound fluid saturation decrease with increasing,the free fluid saturation shows the opposite trend,the permeability decreases and then increases. 展开更多
关键词 electrolytic manganese residue physical and mechanical properties microscopic pore structure T_(2)spectra pore structure parameters
原文传递
Connecting microscopic structure and macroscopic mechanical properties of structural materials from first-principles 被引量:2
7
作者 LU GuangHong ZHANG Lei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第12期2305-2315,共11页
Computer simulation plays a critical role in connecting microscopic structure and macroscopic mechanical properties of structural material,which is a key factor that needs to be considered in design of such kind of ma... Computer simulation plays a critical role in connecting microscopic structure and macroscopic mechanical properties of structural material,which is a key factor that needs to be considered in design of such kind of material.Via the quantum mechanics first-principles calculations,one can gain structure,elastic constant,energetics,and stress of selected material system,based on which one is able to predict the mechanical properties or provide useful insights for the mechanical properties of the materials.This can be done either directly or in combination with the empirical criterions.This paper reviews the recent research advances on the attempts to predict the mechanical properties of structural materials from first principles. 展开更多
关键词 mechanical properties microscopic structure structural material FIRST-PRINCIPLES
原文传递
Spatio-temporal evolution of pore and fracture structures in coal induced by initial damage and creep behavior:A real-time NMR-based approach
8
作者 Lei Zhang Yimeng Wang +5 位作者 Mingzhong Gao Wenhao Jia Senlin Xie Wei Hou Xiangyu Wang Hao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1409-1425,共17页
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa... Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out. 展开更多
关键词 COAL microscopic pore and fracture structures Initial damage Creep behavior Fractional porosity model of seepage pores and microfractures Nuclear magnetic resonance
在线阅读 下载PDF
EFFECTS OF La ON STRUCTURE AND PROPERTIES OF HEAVY RAIL STEEL
9
作者 C.J. Liu M.F. Jiang +2 位作者 Y.S. Wang J.J. Chen C.L. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期701-706,共6页
The mechanisms of La in heavy rail steel were studied by means of experimental measurements, microstructure observation and theoretical analysis in the present work. For heavy rail steel, the state and the content of ... The mechanisms of La in heavy rail steel were studied by means of experimental measurements, microstructure observation and theoretical analysis in the present work. For heavy rail steel, the state and the content of La were measured, and the mechanisms and the effects of La on sulfide inclusions, microstracture and properties of steel were determined. Strip-like sulfides disappear in heavy rail steel with La/(O+S)〉3.50, which is shown that the metallurgical function of modifying sulfide inclusions has been achieved by La. La can fine the grain size of the austenite in heavy rail steel. Under the experimental condition, the plasticity and the impacting toughness of heavy rail steel with 0.005wt% La can evidently be improved. 展开更多
关键词 rare earth heavy rail steel microscopic structure sulfide inclusion property
在线阅读 下载PDF
The Microstructure and Chemical Bonds of β-C_2S Under the High Energy Ball Grinding Function
10
作者 胡曙光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期150-153,共4页
Using the laser granularity survey technology , logy, X-ray powder diffraction, scanning electron microscopy (SEM) and infrared spectrum anal)sis methods, we studied the microscopic structure and chemical bonds cha... Using the laser granularity survey technology , logy, X-ray powder diffraction, scanning electron microscopy (SEM) and infrared spectrum anal)sis methods, we studied the microscopic structure and chemical bonds changes of β-C2 S monomineral under the high energy ball grinding function. The result indicates that, continuously under the mechanical power, β-C2 S crystal size would decrease, the micro strain and the effective Beff parameter would increase, and the amorphous phases would be presented. Furthermore, the mechanical power would cause Si-O bond broken and reorganized, the specific surface area would increase, the energy of micro-powder agglomeration vibration would be enhanced and the crystal would be disordered. Finally, β- C2 S was caused to have the mechanochemical change and the activity enhancement. 展开更多
关键词 dicalcium silicate crystal microscopic structure MECHANOCHEMISTRY
在线阅读 下载PDF
Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation 被引量:2
11
作者 Jin Wang Siru Pan Dongping Luo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第2期308-315,共8页
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based ... A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately. 展开更多
关键词 coagulation-microfiltration process cake layer structure iron-based coagulant zeta potential porosity scanning electric microscope
原文传递
Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
12
作者 张静 陈铮 +1 位作者 王永欣 卢艳丽 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期393-398,共6页
Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure.Component distribution Ni(75)AlxV(25-x) alloys are in... Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure.Component distribution Ni(75)AlxV(25-x) alloys are investigated using a microscopic phase field model to illuminate relations between anti-structured defects and composition,precipitate order,precipitate type,and phase stability.The Ni(75)AlxV(25-x) alloys undergo single Ni3V(stage Ⅰ),dual Ni3Al and Ni3V(stage Ⅱ with Ni3V prior;and stage Ⅲ with Ni3Al prior),and single Ni3Al(stage Ⅳ) with enhanced aluminum level.For Ni3V phase,anti-structured defects(V(Ni1),Niy,except V(Ni2)) and substitution defects(Al(Ni1),Al(Ni2),Alv) exhibit a positive correlation to aluminum in stage I,the positive trend becomes to negative correlation or smooth during stage Ⅱ.For Ni3 Al phase,anti-structured defects(Al(Ni),Ni(Al)) and substitution defects(V(Ni),V(Al)) have a positive correlation to aluminum in stage Ⅱ,but Ni(Al) goes down since stage Ⅲ and lasts to stage Ⅳ.V(Ni) and V(Al) fluctuate when Ni3Al precipitates prior,but go down drastically in stageⅣ.Precipitate type conversion of single Ni3V/dual(Ni3V+Ni3Al) affects Ni3V defects,while dual(Ni3V+Ni3Al)/single Ni3 Al has little effect on Ni3Al defects.Precipitate order swap occurred in the dual phase region affects on Ni3Al defects but not on Ni3V. 展开更多
关键词 defects structured prior precipitate substitution fluctuate microscopic ordered migration fitting
原文传递
Characteristics and controlling factors of micropore structures of the Longmaxi Shale in the Jiaoshiba area,Sichuan Basin
13
作者 Guo Xusheng Li Yuping +1 位作者 Liu Ruobing Wang Qingbo 《Natural Gas Industry B》 2014年第2期165-171,共7页
Pore structures in shales are a main factor affecting the storage capacity and production performance of shale gas reservoirs.Taking Longmaxi Shales in the Jiaoshiba area of the Sichuan Basin as a study object,we syst... Pore structures in shales are a main factor affecting the storage capacity and production performance of shale gas reservoirs.Taking Longmaxi Shales in the Jiaoshiba area of the Sichuan Basin as a study object,we systematically study the microscopic pore structures of shales by using Argon-ion polishing Scanning Electron Microscope(SEM),high-pressure mercury injection and low-temperature nitrogen adsorption and desorption experiments.The study results show that:the Longmaxi Shale in this area are dominated by nano-scale pores which can be classified into organic pores,inorganic pores(intergranular pores,intragranular pores,inter-crystalline pores and dissolution pores),microfractures(intragranular structure fractures,interlayer sliding fractures,diagenetic shrinkage joints and abnormal-pressure fractures from organic evolution),among which organic pores and clay mineral pores are predominant and organic pores are the most common;a TOC value shows an obvious positive correlation with the content of organic pores,which account for up to 50%in the lower-quality shales with a TOC of over 2%where they are most developed;microscopic pore structures are very complex and open,with pores being mainly in cylinder shape with two ends open,or in parallel tabular shape with four sides open and 2–30 nm in diameter,being mostly medium pores.On this basis,factors affecting the micropore structures of shales in this area are studied.It is concluded that organic matter abundance and thermal maturity are the major factors controlling the microscopic pore structures of shales,while the effects of clay mineral content are relatively insignificant. 展开更多
关键词 Sichuan Basin Jiaoshiba area Early Silurian Longmaxi Shale microscopic pore structure Controlling factor Organic pore Thermal evolution degree Shale gas
在线阅读 下载PDF
Experimental deformation of shales at elevated temperature and pressure:Pore-crack system evolution and its effects on shale gas reservoirs
14
作者 Yi-Wen Ju Xin-Gao Hou +5 位作者 Kui Han Yu Song Lei Xiao Cheng Huang Hong-Jian Zhu Li-Ru Tao 《Petroleum Science》 CSCD 2024年第6期3754-3773,共20页
Although many studies based on naturally deformed samples have been carried out to investigate the pore-crack characteristics of shales,studies based on high temperature(T)and high pressure(P)deformation experiments,w... Although many studies based on naturally deformed samples have been carried out to investigate the pore-crack characteristics of shales,studies based on high temperature(T)and high pressure(P)deformation experiments,which can exclude sample heterogeneity factors,simulate deep T-P conditions,and generate a continuous deformation sequence,are still rare.In this study,shales with different deformation levels are generated by triaxial compression experiments,and methods including scanning electron microscopy,mercury injection,and gas sorption are utilized to characterize their influence factors and pore-crack characteristics.Results indicate that T is the primary factor influencing shale deformation when P is low,while P is dominant under high P conditions.At T<90℃ and P<60 MPa,shales undergo brittle deformation and their macropores decrease due to the compaction of primary pores,while mesopores increase because of the interconnection of micropores.At 90℃<T<200℃ and 60 MPa<P<110 MPa,shales experience brittle-ductile transitional deformation,and their macro-and micropores increase because of the extension of open cracks and the plastic deformation of clay flakes respectively,while mesopores decrease dramatically.At T>200℃ and P>110 MPa,shales are subjected to ductile deformation,and their micro-and mesopores drop significantly due to the intense compaction in the matrix while macropores continuously increase with crack expansion.The permeability of shale increases with the degree of deformation and ductile material contents are predicted to be a key factor determining whether open microcracks can be preserved after ductile deformation.To account for these experimental results,an ideal model of micro pore-crack system evolution in deformed shales is further proposed,which can provide guidance for the exploration of shale gas resources in the deep or structurally complex zones. 展开更多
关键词 SHALE Deformation experiment microscopic structure Pore-crack system Shale gas reservoir
原文传递
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
15
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling microscopic pore-fracture structure Variable-order fractional creep model Deep coal
在线阅读 下载PDF
Polarization Control in High Harmonic Generation Using Molecular Structures in Nonaligned Molecules
16
作者 Jie Long Xiaosong Zhu +5 位作者 Chunyang Zhai Wenqing Li Wanzhu He Lixin He Pengfei Lan Peixiang Lu 《Ultrafast Science》 2025年第2期31-41,共11页
The symmetry of the target system plays a decisive role in the polarization of high harmonic generation(HHG).Molecules breaking the isotropic symmetry can be utilized to manipulate HHG polarization,but it has long bee... The symmetry of the target system plays a decisive role in the polarization of high harmonic generation(HHG).Molecules breaking the isotropic symmetry can be utilized to manipulate HHG polarization,but it has long been believed that prealignment is necessary to manifest the microscopic molecular structural effect within the macroscopic ensemble.In this work,we show that the molecular structural effect can be exploited in nonaligned molecular ensembles with appropriate 2-dimensional driving fields,despite the ensembles exhibiting isotropic macroscopic symmetry.The feasibility of this scheme is comprehensively elaborated with a multiscale theory from the perspective of symmetry breaking and is experimentally validated employing bichromatic counterrotating circularly polarized driving fields as an example.By varying the intensity ratio of the bichromatic components,substantially chiral high harmonics are generated from nonaligned molecules associated with the highest HHG efficiency,where,by contrast,the spectral chirality is nearly zero from the reference atom.Remarkably,we observe a simultaneous enhancement of both the chirality and yield of the harmonics from CO_(2),overcoming a commonly observed trade-off of the HHG efficiency for higher spectral chirality.Our findings hold the potential for a straightforward and robust pathway toward attosecond light sources with high brightness and large ellipticity. 展开更多
关键词 target system high harmonic generation symmetry breaking high harmonic generation hhg molecules breaking isotropic symmetry microscopic molecular structural effect molecular structures polarization control molecular structural effect
原文传递
Imaging and dynamic monitoring of aging mitochondria using a two-photon nonlinear structured illumination microscope
17
作者 Xinran Li Meiting Wang +6 位作者 Peng Du Xiaomin Zheng Jiajie Chen Yuye Wang Junle Qu Ning Li Yonghong Shao 《Chinese Optics Letters》 2025年第9期123-128,共6页
Mitochondrial dynamics critically regulate cellular aging.Two-photon nonlinear structured illumination microscopy(TPSIM),a low-phototoxicity live-cell imaging technique,was employed to dynamically track mitochondrial ... Mitochondrial dynamics critically regulate cellular aging.Two-photon nonlinear structured illumination microscopy(TPSIM),a low-phototoxicity live-cell imaging technique,was employed to dynamically track mitochondrial changes in senescent H9C2 cardiomyocytes.System validation in COS7 cells achieved 82-nm resolution,threefold higher than conventional microscopy,and sustained 5-min dynamic imaging.Compared to normal cells,senescent cells exhibited fragmented mitochondria.TP-SIM further captured impaired mitochondrial fusion dynamics during senescence through continuous imaging,demonstrating its dual capability for subcellular-resolution visualization and prolonged organelle tracking in live cells. 展开更多
关键词 mitochondrial dynamics live cell super-resolution imaging structured illumination microscope cardiac aging
原文传递
CO_2 Gasification Characteristics of High and Low Reactivity Cokes 被引量:5
18
作者 Bing GAO Jian-liang ZHANG +3 位作者 Hai-bin ZUO Cheng-lin QI Yan RONG Zhe WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第8期723-728,共6页
In order to effectively utilize the high reactivity coke, the gasification characteristics of high and low reactivity cokes were investigated at 1100 ℃. Low reactivity coke A and high reactivity coke B were chosen an... In order to effectively utilize the high reactivity coke, the gasification characteristics of high and low reactivity cokes were investigated at 1100 ℃. Low reactivity coke A and high reactivity coke B were chosen and charged into the reaction tube in two methods. The results indicated that the mass loss ratio of high reactivity coke in mixed cokes was more significant than that of single high reactivity coke in the middle stage of reaction. Nevertheless, the mass loss ratio of low reactivity coke in mixed cokes was less than that of single low reactivity coke. It was mainly attributed to gas diffusion and internal reaction of coke. When high and low reactivity cokes were mixed, the practical average mass loss ratio was nearly the same as the weighted average. The microscopic structures of coke indicated that with the increase of reaction time, the external and internal layers of low reactivity coke reacted more uniformly with CO2, whereas the reaction degree of external layer of high reactivity coke was obviously higher. 展开更多
关键词 blast furnace gasification characteristics high reactivity coke mass loss ratio microscopic structure
原文传递
THE STUDY ON BEHAVIOR OF Al_2O_3-C BRICK FOR BLAST FURNACE AT HIGH TEMPERATURE
19
作者 W.H.Tong, F.M.Shen and W.Z.Wang The Department of Ferrous Metallurgy, Northeastern University, Shenyang 110006,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1106-1110,共5页
In experimental conditions simulating reducing atmosphere in Blast Furnace, the samples of Al 2O 3 C brick were heated at high temperature. Their microscopic structures were observed by Scanning Electric Telescope ... In experimental conditions simulating reducing atmosphere in Blast Furnace, the samples of Al 2O 3 C brick were heated at high temperature. Their microscopic structures were observed by Scanning Electric Telescope and rupture and compressive strength measured before and after heating observed the changes. According to these measurements, the reasons causing the changes were analyzed. 展开更多
关键词 blast furnace Al 2O 3 C brick microscopic structure rupture and compressive strength
在线阅读 下载PDF
Relationship of glass forming ability and local structural properties of liquid Cu-Zr alloys
20
作者 李敬芬 刘长松 《Journal of Chongqing University》 CAS 2011年第2期51-59,共9页
Molecular dynamics(MD) simulations were performed to investigate the glass forming ability(GFA) and microscopic structural properties of liquid Cu-Zr alloys.Based on the analysis of composition dependences of the redu... Molecular dynamics(MD) simulations were performed to investigate the glass forming ability(GFA) and microscopic structural properties of liquid Cu-Zr alloys.Based on the analysis of composition dependences of the reduced glass transition temperatures and the excess volume,we found that the Cu-Zr glasses have the largest GFA at Cu65Zr35 composition.To get more detailed information of local structure,we calculated the pair correlation functions,partial pair correlation functions,the excess entropy,chemical order parameter,coordination number,and Voronoi index of Cu-Zr liquids.We found that there exists an obvious and close relationship among the GFA,the excess entropy calculated using the total pair correlation functions,chemical order parameters,and some Cu centered cluster with Voronoi index <0,2,8,1> and Zr centered cluster with Voronoi index <0,3,6,4>,which all have nonlinear dependences on Cu/Zr concentration and have extreme values at liquid Cu65Zr35 composition. 展开更多
关键词 bulk metallic glass glass forming ability microscopic structure molecular dynamics simulation
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部