This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency c...This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.展开更多
In this paper, a method to calculate the slope of the ratio restraint characteristic of a transformer differential relay protection is proposed. The method allows using some concise but effective means to get the slop...In this paper, a method to calculate the slope of the ratio restraint characteristic of a transformer differential relay protection is proposed. The method allows using some concise but effective means to get the slope. Modulating the argument of current output from ONLLY testing equipment can make the relay protection device operate, thus, the data used for calculation would be obtained naturally after several trails. In order to make sure how effective that method could be, some experiment data is given as well.展开更多
At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this ...At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.展开更多
In this study, we will cover the basic methods used to distinguish between inrush current and fault current in power transformers. First, the nature of inrush current is presented compared to the fault current. Then t...In this study, we will cover the basic methods used to distinguish between inrush current and fault current in power transformers. First, the nature of inrush current is presented compared to the fault current. Then the nature of the magnetizing current due to energizing a power transformer at no-load is explained. The first generation of methods used to disable the protective relay system during inrush current, namely the Desensitizing and Tripping Suppressor, is introduced. The second generation, the harmonic restraint method and the waveform-based restraint method with their different versions, is explained. Then we will explore thoroughly the fictitious equivalent resistance method as an example of the third generation of model type restraining or blocking methods. Finally, a comparison between these methods and conclusion is carried out.展开更多
In view of two consecutive failures of Siemens 3RH1122-2KF40 relay on DKZ15 electric bus of Beijing metro line 10, it is found that Siemens 3RH1122-2KF40 relay has the defects of unreliable contact mechanical structur...In view of two consecutive failures of Siemens 3RH1122-2KF40 relay on DKZ15 electric bus of Beijing metro line 10, it is found that Siemens 3RH1122-2KF40 relay has the defects of unreliable contact mechanical structure and degraded contact electrical performance. In order to further improve the reliability of the key circuits of the train of line 10, eliminate the hidden dangers of vehicle faults, and reduce the failure rate and the cost of use and maintenance, it is decided to replace this type of relay. In the early stage of the transformation, the failure cause analysis, relay selection, comparative test and life accounting were carried out, and the transformation scheme was finally formed. The replacement relay effectively makes up for the deficiencies in the mechanical and electrical performance of Siemens 3RH1122-2KF40 relay, and is more in line with the actual needs of urban rail transit operation under the balanced repair mode in the future. At present, the transformation of DKZ15 electric buses of line 10 has been completed. After the transformation, the vehicle operation is in good condition, and the maximum operation mileage has exceeded 600000 km. Through relay transformation, the reliability of key circuits of the train is effectively improved, the maintenance and replacement free in the whole life cycle of the train are achieved, and the labor and material costs are reduced, which lays a solid quality guarantee for promoting the balanced maintenance mode of metro vehicles in the future.展开更多
为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测...为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测方法。首先,基于快速傅里叶变换分析特高压直流输电系统暂态故障特征,使用相模变换和小波变换提取出故障特征量作为输入数据。其次,将输入数据输入到LSTM-RNN中进行前向传播,对系统故障特征进行深度学习,同时使用反向传播方式更新网络参数,将深层的特征量输入到Softmax分类器中进行分类,把故障识别分成区外故障、母线故障和线路故障,故障分类为正极故障、负极故障和双极故障,并输出识别结果。最后,在PSCAD/EMTDC仿真条件下,搭建特高压直流输电模型。验证结果表明:所提的方法在特高压直流输电线路继电保护的故障检测、故障选极上具有更好的效果,相比于人工神经网络、卷积神经网络、支持向量机,故障识别准确率分别提升4.71%、6.57%、9.32%。展开更多
文摘This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.
文摘In this paper, a method to calculate the slope of the ratio restraint characteristic of a transformer differential relay protection is proposed. The method allows using some concise but effective means to get the slope. Modulating the argument of current output from ONLLY testing equipment can make the relay protection device operate, thus, the data used for calculation would be obtained naturally after several trails. In order to make sure how effective that method could be, some experiment data is given as well.
文摘At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.
文摘In this study, we will cover the basic methods used to distinguish between inrush current and fault current in power transformers. First, the nature of inrush current is presented compared to the fault current. Then the nature of the magnetizing current due to energizing a power transformer at no-load is explained. The first generation of methods used to disable the protective relay system during inrush current, namely the Desensitizing and Tripping Suppressor, is introduced. The second generation, the harmonic restraint method and the waveform-based restraint method with their different versions, is explained. Then we will explore thoroughly the fictitious equivalent resistance method as an example of the third generation of model type restraining or blocking methods. Finally, a comparison between these methods and conclusion is carried out.
文摘In view of two consecutive failures of Siemens 3RH1122-2KF40 relay on DKZ15 electric bus of Beijing metro line 10, it is found that Siemens 3RH1122-2KF40 relay has the defects of unreliable contact mechanical structure and degraded contact electrical performance. In order to further improve the reliability of the key circuits of the train of line 10, eliminate the hidden dangers of vehicle faults, and reduce the failure rate and the cost of use and maintenance, it is decided to replace this type of relay. In the early stage of the transformation, the failure cause analysis, relay selection, comparative test and life accounting were carried out, and the transformation scheme was finally formed. The replacement relay effectively makes up for the deficiencies in the mechanical and electrical performance of Siemens 3RH1122-2KF40 relay, and is more in line with the actual needs of urban rail transit operation under the balanced repair mode in the future. At present, the transformation of DKZ15 electric buses of line 10 has been completed. After the transformation, the vehicle operation is in good condition, and the maximum operation mileage has exceeded 600000 km. Through relay transformation, the reliability of key circuits of the train is effectively improved, the maintenance and replacement free in the whole life cycle of the train are achieved, and the labor and material costs are reduced, which lays a solid quality guarantee for promoting the balanced maintenance mode of metro vehicles in the future.
文摘为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测方法。首先,基于快速傅里叶变换分析特高压直流输电系统暂态故障特征,使用相模变换和小波变换提取出故障特征量作为输入数据。其次,将输入数据输入到LSTM-RNN中进行前向传播,对系统故障特征进行深度学习,同时使用反向传播方式更新网络参数,将深层的特征量输入到Softmax分类器中进行分类,把故障识别分成区外故障、母线故障和线路故障,故障分类为正极故障、负极故障和双极故障,并输出识别结果。最后,在PSCAD/EMTDC仿真条件下,搭建特高压直流输电模型。验证结果表明:所提的方法在特高压直流输电线路继电保护的故障检测、故障选极上具有更好的效果,相比于人工神经网络、卷积神经网络、支持向量机,故障识别准确率分别提升4.71%、6.57%、9.32%。