期刊文献+
共找到512,675篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Analysis of a Spiral-groove Dry-gas Seal Considering Micro-scale Effects 被引量:13
1
作者 WANG Bing ZHANG Huiqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期146-153,共8页
A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication pr... A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime. 展开更多
关键词 micro-scale effect spiral-groove dry-gas seal numerical analysis Reynolds equation
在线阅读 下载PDF
Effect of pore throat structure on micro-scale seepage characteristics of tight gas reservoirs 被引量:1
2
作者 Zhang Liehui Liu Xiangyu +2 位作者 Zhao Yulong Zhou Yuan Shan Baochao 《Natural Gas Industry B》 2020年第2期160-167,共8页
At present,the effects of pore throat structure on micro-scale seepage characteristics of tight gas reservoirs are less researched,and traditional numerical simulation methods are faced with a great number of challeng... At present,the effects of pore throat structure on micro-scale seepage characteristics of tight gas reservoirs are less researched,and traditional numerical simulation methods are faced with a great number of challenges in the study of micro-scale flow.In this paper,the flow pattern of tight gas was studied based on the actual temperature and pressure of tight gas reservoir and the characteristic size of reservoir pore throat,and the rationality of tight gas flow was simulated by means of lattice Boltzmann method.Then,considering the influences of micro-scale effect,slippage effect and other factors,a tight gas flow model was established on the basis of LBGK-D2Q9 model,and its calculation results were compared with the analytical solutions and the numerical solutions listed in the literature.Finally,the influential laws of pore throat structure on the micro-scale seepage characteristics of tight gas were discussed.And the following research results were obtained.First,when the pressure is in the range of 3-70 MPa and the temperature is in the range of 293.15-373.15 K,the Knudsen number(Kn)is less than 0.1 and the gas flow is in the pattern of slippage flow and weak continuous flow.And in this case,it is reasonable to adopt the LBGK-D2Q9 model to simulate tight gas flow.Second,the effect of the characteristic size of the flow channel on the Kn is much greater than that of the pressure change.When the pore-throat ratio is constant,the Kn increases slowly along the throat.And its increasing trend gets more obvious with the increase of pore-throat ratio.Third,the presence of the throat makes the non-linear distribution characteristics of the pressure in the pore throat significant,and the pressure drop mainly lies in the throat.And the higher the pore-throat ratio is,the larger the pressure drop range in the throat is.Fourth,the non-linear distribution of pressure decreases the gas flow speed significantly,thus reducing the mass flow rate in the flow channel.In conclusion,the simulation result of the model established in this paper is highly coincident with the analytical solutions and the numerical solutions calculated by DSMC and IP methods in the literature,which verifies that this proposed model is reliable.The research results reveal the importance of“connecting fracture and expanding throat”in the practical development engineering of tight gas reservoirs. 展开更多
关键词 Tight gas reservoir Lattice Boltzmann method Pore throat structure micro-scale flow Seepage characteristic Slippage effect
暂未订购
Measurement of aerodynamic heating of micro-scale rotational shearing flow and its heat flux identification
3
作者 Yuan LIU Yuanwei LYU +3 位作者 Jingyang ZHANG Chunyang LI Jingzhou ZHANG Zhongwen HUANG 《Chinese Journal of Aeronautics》 2025年第4期70-90,共21页
This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response ... This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2). 展开更多
关键词 micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL) Hyper-rotate-speed End leakage Aerodynamic heating experimental measurement Heat flux identification
原文传递
Electronically Conductive Metal−Organic Framework With Photoelectric and Photothermal Effect as a Stable Cathode for High-Temperature Photo-Assisted Zn/Sn-Air Battery
4
作者 Jiangchang Chen Chuntao Yang +2 位作者 Yao Dong Ya Han Yingjian 《Carbon Energy》 2026年第1期105-114,共10页
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro... Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis. 展开更多
关键词 electronically conductive MOFs high temperatures photo-assisted Zn/Sn-air batteries photoelectric effects photothermal effects
在线阅读 下载PDF
CUDA‑based GPU‑only computation for efficient tracking simulation of single and multi‑bunch collective effects
5
作者 Keon Hee Kim Eun‑San Kim 《Nuclear Science and Techniques》 2026年第1期61-79,共19页
Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based met... Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation. 展开更多
关键词 Code development GPU computing Collective effects
在线阅读 下载PDF
Synergistic antibacterial effect and mechanism of benzalkonium chloride and polymyxin B against Pseudomonas aeruginosa
6
作者 Caihong Wang Jiaxin Zhang +3 位作者 Tong Li Jingwei Wang Dan Xu Qiao Ma 《Journal of Environmental Sciences》 2026年第1期555-564,共10页
Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative patho... Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns. 展开更多
关键词 Pseudomonas aeruginosa Benzalkonium chloride Polymyxin B Synergistic effect Membrane disruption
原文传递
Postoperative effective lens position and refraction changes with three different types of intraocular lens
7
作者 Xi-Xia Ding Lin-Feng Xiang +5 位作者 Wen-Tao Tong Dan-Dan Wang Hong-FangZhang Ping-Jun Chang Fu-Man Yang Yun-E Zhao 《International Journal of Ophthalmology(English edition)》 2026年第2期260-265,共6页
AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 group... AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs. 展开更多
关键词 effective lens position REFRACTION intraocular lens swept-source optical coherence tomography
原文传递
Effect of Thermoelectric Cooler Arrangements on Thermal Performance and Energy Saving in Electronic Applications:An Experimental Study
8
作者 M.N.Abd-Al Ameer Iman S.Kareem Ali A.Ismaeel 《Energy Engineering》 2026年第1期511-526,共16页
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc... Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management. 展开更多
关键词 Energy consumption mono ethylene glycol Peltier effect performance factor(COP)
在线阅读 下载PDF
Magnetic Properties and Kondo Effect in Ce_(3)TiBi_(5) under High Pressure
9
作者 L.C.Fu W.J.Cheng +11 位作者 L.C.Shi B.S.Min Y.Peng J.Zhang J.Song Z.Deng J.F.Zhao Y.Liu J.L.Zhu J.F.Zhang X.C.Wang C.Q.Jin 《Chinese Physics Letters》 2026年第1期184-197,共14页
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg... The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure. 展开更多
关键词 magnetic properties resistivity measurements high pressure kondo effect kondo effectthe kondo scattering Ce TbI
原文传递
Investigation of natural and anthropogenic effects on aerosols optical properties over the Western Pacific ocean by the research vessel KEXUE
10
作者 Jinyuan Xin Yining Ma +6 位作者 Xiangguang Zhang Yongjing Ma Xiaoyan Wu Fangkun Wu Quan Liu Yilong Lyu Jiawei Jiang 《Journal of Environmental Sciences》 2026年第1期596-605,共10页
In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural a... In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences. 展开更多
关键词 Aerosol optical properties Natural and anthropogenic effects Improve algorithm Ship-borne experiment Western Pacific Ocean
原文传递
Dynamic fracture behavior and coupled impact effect of as-cast W-Zr-Ti energetic structural material
11
作者 Yuxuan Qi Liang Mao +3 位作者 Chunlan Jiang Guitao Liu Kongxun Zhao Mengchen Zhang 《Defence Technology(防务技术)》 2026年第1期422-435,共14页
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior... This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment. 展开更多
关键词 Energetic structural material Dynamic fracture behavior Coupled impact effect Mechanical property Peridynamics As-cast W-Zr-Ti alloy
在线阅读 下载PDF
Effectiveness and Safety of Lenvatinib and Everolimus after Immune Checkpoint Inhibitors in Metastatic Renal Cell Cancer:A Systematic Review
12
作者 Giacomo Iovane Luca Traman +5 位作者 Michele Maffezzoli Giuseppe Fornarini Domenico Corradi Debora Guareschi Matteo Santoni Sebastiano Buti 《Oncology Research》 2026年第1期57-70,共14页
Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenv... Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies. 展开更多
关键词 Metastatic renal cell carcinoma(mRCC) immune checkpoint inhibitors(ICIs) lenvatinib EVEROLIMUS effectIVENESS SAFETY systematic review
暂未订购
Lithium Nitrate Effects for Lithium-Based Chemical Batteries:A Review
13
作者 Xianshu Wang Junru Wu +6 位作者 Huirong Wang Xiangshao Yin Zhuo Zhou Yuanyuan Huang Yelong Zhang Weishan Li Baohua Li 《Carbon Energy》 2026年第1期197-222,共26页
Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and l... Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs. 展开更多
关键词 effects and mechanisms LiNO_(3)derivatives LiNO_(3)-containing recipes lithium metal anode Lithium nitrate basis lithium-based chemical batteries
在线阅读 下载PDF
Discharge characteristics of a needle-to-plate electrode at a micro-scale gap 被引量:9
14
作者 王荣刚 季启政 +3 位作者 张桐恺 夏清 张宇 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第5期126-130,共5页
To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in ai... To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in air.The effect of the needle radius and the gas pressure on the discharge characteristics are tested.The results show that when the gap is larger than 10 μm,the relation between the breakdown voltage and the gap looks like the Paschen curve;while below 10 μm,the breakdown voltage is nearly constant in the range of the tested gap.However,at the same gap distance,the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen's law.The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge.A simple model is used to explain the non-normality of breakdown in the micro-gaps.The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air. 展开更多
关键词 needle-to-plate electrode micro-scale gap gas breakdown
在线阅读 下载PDF
Recent Advances in Computational Simulation of Macro-,Meso-,and Micro-Scale Biomimetics Related Fluid Flow Problems 被引量:5
15
作者 Y. Y. Yan 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第2期97-107,共11页
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r... Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed. 展开更多
关键词 biomimetics computational simulation macro- meso- micro-scale HYDROPHOBIC SURFACES
在线阅读 下载PDF
Dechlorination of Chlorinated Aliphatic Compounds by Micro-scale Al-Zn-Mg/Fe Powders as Advanced Zero-valent Iron 被引量:3
16
作者 解淑民 万平玉 +3 位作者 Andrew J.Feitz GUAN Jing 杨晓波 刘小光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期716-718,共3页
Micro-scale Al-Zn-Mg/Fe composite powders (MAF) with high reactivity and good storage properties were prepared by reducing iron onto the surface of Al-Zn-Mg alloy powders. Experimental results show that MAF as advance... Micro-scale Al-Zn-Mg/Fe composite powders (MAF) with high reactivity and good storage properties were prepared by reducing iron onto the surface of Al-Zn-Mg alloy powders. Experimental results show that MAF as advanced zero-valent iron are highly effective for degradation of chlorinated organic compounds. The efficiency of degradation for carbon tetrachloride and perchloroethylene is higher than 99% within a period of 2 h. The efficiency of degradation for trichloroethylene by MAF after storing for one month is equivalent to that by freshly prepared nano-size zero-valent iron particles. 展开更多
关键词 chlorinated organic compound DEGRADATION micro-scale Al-Zn-Mg/Fe powder
在线阅读 下载PDF
Thermoelastic vibration analysis of micro-scale functionally graded material fluid-conveying pipes in elastic medium 被引量:2
17
作者 TONG Guo-jun LIU Yong-shou +1 位作者 LIU Hui-chao DAI Jia-yin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2785-2796,共12页
Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is st... Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied.Based on modified couple stress theory and Hamilton’s principle,the governing equation and boundary conditions are obtained.The differential quadrature method(DQM)is applied to investigating the thermoelastic vibration of the FGM pipes.The effect of temperature variation,scale effect of the microtubule,micro-fluid effect,material properties,elastic coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied.The results show that in the condition of considering the scale effect and micro-fluid of the microtubule,the critical dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic model.The results also show that the variations of temperature,material properties,elastic coefficient and outer radius have significant influences on the first-order dimensionless natural frequency. 展开更多
关键词 functionally graded materials thermoelastic vibration micro-scale micro-fluid
在线阅读 下载PDF
Fabrication of micro-scale gratings for moiré method with a femtosecond laser 被引量:2
18
作者 Gaosheng Yan Jianguo Zhu +2 位作者 Yanlong Huang Wenfen Hao Yanjie Li 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第4期171-175,共5页
Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is th... Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moire patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1 μm, and the frequency of grating is 500 lines/ram. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on molte method, scanning electron microscope (SEM) moire patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement. 展开更多
关键词 micro-scale grating Femtosecond laser Moire method
在线阅读 下载PDF
Micro-scale FEM Calculation of Concrete Temperature during Production and Casting 被引量:1
19
作者 朱振泱 LIU Yi +5 位作者 ZHANG Guoxin WU Congcong WANG Zhenhong LIU Youzhi ZHANG Lei YANG Ning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期113-120,共8页
A micro-scale finite element method(FEM) was proposed to precisely calculate the heat conduction between mortar and aggregate, and thus to accurately predict the non-uniformity of concrete pouring temperature. The con... A micro-scale finite element method(FEM) was proposed to precisely calculate the heat conduction between mortar and aggregate, and thus to accurately predict the non-uniformity of concrete pouring temperature. The concrete temperature field during vibration was also precisely calculated by accurate description of heat absorption characteristics of different parts of concrete when vibration. Based on the above method, the prediction model was used to predict the pouring temperature of a practical engineering. The comparison between actual results and simulated values shows that this method can be adopted to accurately predict the non-uniformity of concrete pouring temperature and the influence of mechanized vibration on concrete pouring temperature, and thus accurately predict pouring temperature. The control of casting temperature is crucial for preventing concrete fracture. The study provides a new method for predicting the pouring temperature of concrete structures, which has great practical value in engineering application. 展开更多
关键词 concrete POURING TEMPERATURE micro-scale FINITE-ELEMENT TEMPERATURE prediction
原文传递
Coupled bio-chemo-hydro-mechanical modeling of microbially induced calcite precipitation process considering biomass encapsulation using a micro-scale relationship 被引量:1
20
作者 Pavan Kumar Bhukya Nandini Adla Dali Naidu Arnepalli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2775-2789,共15页
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic... Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements. 展开更多
关键词 Biocementation process Bio-chemo-hydro-mechanical(BCHM) model Reactive transport ENCAPSULATION micro-scale
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部