期刊文献+
共找到60,775篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of chlorination and ultraviolet on the adsorption of pefloxacin on polystyrene and polyvinyl chloride 被引量:1
1
作者 Yanan Li Yaning Wu +2 位作者 Kai Guo Weiqin Wu Meijing Yao 《Journal of Environmental Sciences》 2025年第3期21-34,共14页
During thewater treatment process,chlorination and ultraviolet(UV)sterilization can modify microplastics(MPs)and alter their physicochemical properties,causing various changes between MPs and other pollutants.In this ... During thewater treatment process,chlorination and ultraviolet(UV)sterilization can modify microplastics(MPs)and alter their physicochemical properties,causing various changes between MPs and other pollutants.In this study,the impact of chlorination and UV modification on the physicochemical properties of polystyrene(PS)and polyvinyl chloride(PVC)were investigated,and the adsorption behavior of pefloxacin(PEF)before and after modificationwas examined.The effect of pH,ionic strength,dissolved organicmatter,heavymetal ions and other water environmental conditions on adsorption behavior was revealed.The results showed that PS had a higher adsorption capacity of PEF than PVC,and the modification increased the presence of O-containing functional groups in the MPs,thereby enhancing the adsorption capacity of both materials.Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period,leading to better adsorption performance of chlorination.The optimal pH for adsorption was found to be 6,and NaCl,sodium alginate and Cu2+would inhibit adsorption to varying degrees,among which the inhibition caused by pH was the strongest.Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs.The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding.The study clarified the effects of modification on the physicochemical properties of MPs,providing reference for subsequent biotoxicity analysis and environmental protection studies. 展开更多
关键词 Microplastics CHLORINATION ULTRAVIOLET PEFLOXACIN adsorption mechanism
原文传递
Construction of bismuth based MOF for efficient removal of sodium diclofenac via adsorption and photocatalysis 被引量:1
2
作者 Xiaohui He Chun Chang +2 位作者 Liping Yang Yanrong Cai Qiong Wang 《Journal of Environmental Sciences》 2025年第4期14-24,共11页
The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framewor... The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framework(MOF)Bi-NH_(2)-BDC was prepared and characterized,and the adsorption characteristics of Bi-NH_(2)-BDCwere investigated with typical PPCPs-diclofenac sodium(DCF).It was found that DCF mainly covered the adsorbent surface as a single molecular layer,the adsorption reaction was a spontaneous,entropyincreasing exothermic process and the adsorption mechanisms between Bi-NH_(2)-BDC and DCF were hydrogen bonding,π-πinteractions and electrostatic interactions.In addition,Bi-NH_(2)-BDC also had considerable photocatalytic properties,and its application in adsor-bent desorption treatment effectively solved the problem of secondary pollution,achieving a green and sustainable adsorption desorption cycle. 展开更多
关键词 Bi-NH2-BDC DCF adsorption PHOTOCATALYSIS
原文传递
Effects of grain size on the corrosion inhibition and adsorption performance of benzotriazole on carbon steel in NaCl solution 被引量:1
3
作者 Panjun Wang Jinke Wang +8 位作者 Yao Huang Xuequn Cheng Zhiwei Zhao Lingwei Ma Shun Wang Ruijie Han Zichang Zhang Dawei Zhang Xiaogang Li 《Journal of Materials Science & Technology》 2025年第14期221-236,共16页
This study investigates the adsorption mechanism,the film formation process,and the inhibition performance of benzotriazole(BTAH)on carbon steels with different grain sizes(i.e.,24.5,4.3,and 0.6μm)in 3.5 wt.%NaCl sol... This study investigates the adsorption mechanism,the film formation process,and the inhibition performance of benzotriazole(BTAH)on carbon steels with different grain sizes(i.e.,24.5,4.3,and 0.6μm)in 3.5 wt.%NaCl solution.The results demonstrate that grain refinement significantly impacts the adsorption and inhibition performance of BTAH on carbon steels.Ultra-refinement of steel grains to 0.6μm improves the maximum inhibition efficiency of BTAH to 90.0%within 168 h of immersion,which was much higher than that of the steels with 24.5μm(73.6%)and 4.3μm grain sizes(81.7%).Notably,grain sizes of 4.3 and 0.6μm facilitate a combination of physisorption and chemisorption of BTAH after 120 h of immersion,as evidenced by the X-ray photoelectron spectroscopy(XPS)results and Langmuir adsorption isotherms,while BTAH adsorbed on carbon steels with a grain size of 24.5μm through physisorption during the 168 h of immersion.Ultra-refinement of grains has beneficial impacts on promoting the formation of a stable and dense corrosion inhibitor film,leading to improved corrosion resistance and the mitigation of non-uniform corrosion.These advantageous effects can be attributed to the higher adsorption energy at grain boundaries(approximately-3.12 eV)compared to grain interiors(ranging from-0.79 to 2.47 eV),promoting both the physisorption and chemisorption of organic corrosion inhibitors.The investigation comprehensively illustrates,for the first time,the effects of grain size on the adsorption mechanism,film formation process,and inhibition performance of organic corrosion inhibitors on carbon steels.This study demonstrates a promising approach to enhancing corrosion inhibition performance through microstructural design. 展开更多
关键词 Carbon steel Corrosion inhibitor Grain refinement MICROSTRUCTURE adsorption mechanism
原文传递
Adsorption-Driven Interfacial Interactions: The Key to Enhanced Performance in Heterogeneous Advanced Oxidation Processes 被引量:1
4
作者 Jinming Luo Deyou Yu +3 位作者 Kaixing Fu Zhuoya Fang Xiaolin Zhang Mingyang Xing 《Engineering》 2025年第4期22-25,共4页
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el... Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies. 展开更多
关键词 Heterogeneous advanced oxidation PROCESSES adsorption Pollutant degradation Dual active sites CATALYSIS SELECTIVITY
在线阅读 下载PDF
Synthesis and characteristics of Na-A zeolite from coal fly ash and application for adsorption of cerium(Ⅲ) 被引量:1
5
作者 Amru Daulay Widi Astuti +4 位作者 Slamet Sumardi Fika Rofiek Mufakhir Yayat Iman Supriyatna Tri Haryono Lukmanul Hakim Samada 《Journal of Rare Earths》 2025年第1期171-179,I0007,共10页
Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorpti... Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorption.Fourier transform infrared(FTIR)spectra show peaks at 790,500 and 467 cm^(-1),which are bond vibrations of Si-O-Si,Si with Al-O and Si-O-.The surface area is 15.88 m^(2)/g,with a pore size of 2.14 nm.SEM images show a cubic shape,which indicates the formation of zeolite.Field emission and energy disperse spectroscopy(EDS)shows the formation of Si,Al,Na,and O.Na-A zeolite was applied for Ce^(3+)adsorption.The optimum conditions for Ce^(3+)adsorption are 50 ppm concentration,360 min,and pH 6.The maximum adsorption capacity is 176.49 mg/g.Based on the results,it is found that the adsorption of Ce^(3+)by Na-A zeolite is pseudo-second-order.The desorption test using HNO_(3) is more effective than using HCl and H_(2)SO_(4).A desorption efficiency of 97.22%is obtained at 4 cycles.Adsorption test using real sample wastewater demonstrates an adsorption efficiency of 83.35%. 展开更多
关键词 Coal fly ash ZEOLITE Na-A zeolite adsorption Cerium(Ⅱ) Rare earths
原文传递
Flotation behavior and adsorption mechanism of 2-hydroxy-3-naphthyl hydroxamic acid on bastnaesite surface 被引量:1
6
作者 Zhenyue Zhang Ling Jiang +3 位作者 Wenda Guo Jing Yang Defeng Liu Ru'an Chi 《Journal of Rare Earths》 2025年第5期1084-1090,共7页
In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation... In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation recovery of bastnaesites can be achieved more than 90%when the aeration rate is 40 mL/min,the rotational speed is 200 r/min,the H205 dosage is 120 mg/L,and the pulp pH ranges from 7 to 9.The action mechanism of H205 on the surface of bastnaesite was studied by simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC),Zeta potential measurements,Fourier transform-infrared spectra(FT-IR)and X-ray photoelectron spectroscopy(XPS).These analysis results show that under suitable flotation conditions,H205 has an obvious adsorption phenomenon on the surface of bastnaesite.The adsorption involves electrostatic interactions and chemical interactions,namely H205 has a strong collecting ability of bastnaesite due to the synergism of electrostatic adsorption and chemical adsorption.This study systematically reveals the flotation behavior and adsorption mechanism of H205 on the surface of bastnaesite,and provides useful theoretical guidance for efficient flotation separation of bastnaesite. 展开更多
关键词 BASTNAESITE Flotation behavior 2-Hydroxy-3-naphthyl hydroxamic acid adsorption mechanism Rare earths
原文传递
Novel CO_(2) Adsorbent Prepared with ZSM-5/MCM-48 as Support:High Adsorption Property and Its Mechanism
7
作者 WEI Jianwen ZHANG Lijuan +3 位作者 GENG Linlin LI Yu LIAO Lei WANG Dunqiu 《无机材料学报》 北大核心 2025年第7期833-839,I0015,I0016,共9页
Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the C... Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the CO_(2)adsorption mechanism.A novel CO_(2)adsorbent with high capacity was obtained by grafting 3-aminopropyltriethoxysilane(APTES)on a micro-mesoporous composite molecular sieve ZSM-5/MCM-48 as the support,and then impregnated with tetraethylenepentamine(TEPA)or polyethyleneimine(PEI).The maximum adsorption capacity of APTES-ZSM-5/MCM-48-TEPA-60(A-ZM-T60),loaded with 60%(in mass)TEPA,for CO_(2)reaches 5.82 mmol·g^(-1) at 60℃in 15%(in volume)CO_(2).Carbamate,alkyl ammonium carbamate and carbonate are generated during the chemical adsorption,which is dominant for CO_(2)adsorption because of the reaction between CO_(2)and amino groups on the adsorbent,simultaneously accompanied by weak physical adsorption.All above data confirm that these composites display an outstanding adsorption performance with a bright future for CO_(2)capture from flue gas after desulfurization. 展开更多
关键词 ZSM-5/MCM-48 amino-bifunctionalization CO_(2)capture adsorption kinetics adsorption mechanism
在线阅读 下载PDF
Dual-surface capped hydroxyapatite nano-amendment with tuned alternate long-short chain configuration for efficient adsorption towards multi-heavy metal ions in complex-contaminated systems
8
作者 GAO Mochou MENG Shan +7 位作者 ZHANG Jinzhong FENG Wenhua DONG Shuo CHEN Jianping ZHAO Yanbao YU Laigui YING Rongrong ZOU Xueyan 《无机化学学报》 北大核心 2025年第7期1427-1438,共12页
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an... Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides. 展开更多
关键词 heavy metal HYDROXYAPATITE nano-amendment configuration tuning synergistic adsorption
在线阅读 下载PDF
Adsorption of Arsenic by Laterite, Sandstone and Shale in a Fixed-Bed Column
9
作者 N’Da Akoua Alice Koua-Koffi Sandotin Lassina Coulibaly +1 位作者 Petemanagnan Jean-Marie Ouattara Lacina Coulibaly 《Journal of Materials Science and Chemical Engineering》 2025年第1期45-60,共16页
The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, colum... The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, column experiments were conducted. In this study, raw materials and heat-treated (calcined) materials were examined. The experiments assessed the influence of various parameters, including initial concentration, bed depth, and the effects of heat treatment. The findings revealed that the breakthrough curves were influenced by the initial concentration of arsenic, the depth of the bed, and the type of material used. For an initial arsenic concentration of 5 mg/L, columns containing 85 cm of calcined laterite, sandstone, and shale produced volumes of 7460 ml (1492 min), 3510 ml (702 min), and 4400 ml (880 min) of water with arsenic levels below 0.01 mg/L, respectively. These calcined materials demonstrate significant potential for the effective removal of arsenic from water. 展开更多
关键词 GEOMATERIALS adsorption ARSENIC Water
在线阅读 下载PDF
基于Aspen Adsorption的活性炭吸附乙酸乙酯及预测模拟
10
作者 王占 杨榛 《化学工业与工程》 北大核心 2025年第5期159-167,共9页
通过静态吸附实验研究了乙酸乙酯在比表面积1 269.254 m^(2)·g^(-1)、孔容0.801 cm3·g^(-1)的树脂基活性炭上的吸附行为,分析发现吸附过程符合Langmuir等温吸附模型,模型拟合相关系数R2为0.994,理论吸附容量qe为420.89 mg... 通过静态吸附实验研究了乙酸乙酯在比表面积1 269.254 m^(2)·g^(-1)、孔容0.801 cm3·g^(-1)的树脂基活性炭上的吸附行为,分析发现吸附过程符合Langmuir等温吸附模型,模型拟合相关系数R2为0.994,理论吸附容量qe为420.89 mg·g^(-1)。建立了固定床吸附工艺的数学模型,通过与吸附实验数据对比,计算得到的绝对平均误差AAD值为0.034,分析表明建立的数学模型对于描述活性炭吸附乙酸乙酯的穿透曲线是合理的。用已验证的数学模型,在Aspen Adsorption上对工艺进行了数值模拟,进一步探索了进料流量、操作压力、吸附剂用量和吸附剂堆积密度对吸附过程的影响。模拟结果表明,通过减小进料流量,提升操作压力、增加吸附剂用量及堆积密度,可有效延长穿透时间并提升床层利用率。 展开更多
关键词 活性炭 乙酸乙酯 吸附 动态模拟
在线阅读 下载PDF
Super Adsorption Behavior of Electrospinning-derived Porous Carbon Nanofibers towards Methyl Blue
11
作者 JIANG Zhong-wei LI Xia-chu-qin +2 位作者 HU Cong-yi LI Yuan-fang HUANG Cheng-zhi 《分析测试学报》 北大核心 2025年第9期1878-1888,共11页
Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of opera... Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers. 展开更多
关键词 ELECTROSPINNING porous carbon nanofibers pore-making effect wastewater treatment adsorption
在线阅读 下载PDF
The molecular weight of carbon dots calculated from colligative properties and their application in estimating surface adsorption capacity
12
作者 Ting Sun Xinzhi Liang +3 位作者 Minghao Pang Xia Xin Ning Feng Hongguang Li 《日用化学工业(中英文)》 北大核心 2025年第4期422-429,共8页
Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to... Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields. 展开更多
关键词 carbon dots molecular weight colligative properties surface adsorption capacity
在线阅读 下载PDF
基于Adsorption的化工烟气二氧化碳捕集模拟研究
13
作者 薛智元 杜新宇 《化工管理》 2025年第32期57-60,72,共5页
以化石燃料为重要能源的国家,碳捕获、储存和利用技术(CCUS)正受到越来越多的关注。二氧化碳(CO_(2))主要来源于化工厂等工业设施排放的烟气,因此,捕集烟气中的CO_(2)成为当前亟待解决的关键问题。为解决这一问题,文章针对工业烟气开展C... 以化石燃料为重要能源的国家,碳捕获、储存和利用技术(CCUS)正受到越来越多的关注。二氧化碳(CO_(2))主要来源于化工厂等工业设施排放的烟气,因此,捕集烟气中的CO_(2)成为当前亟待解决的关键问题。为解决这一问题,文章针对工业烟气开展CO_(2)捕集模拟研究,采用变压吸附法(PSA)作为核心技术手段。研究中,首先对选用的三种吸附剂相关数据进行拟合,得到吸附等温线;随后在Aspen Adsorption软件中构建对应的模拟数学模型。通过模拟不同进料状态(如进料浓度、流量、温度等)、吸附剂特性及吸附床结构参数下CO_(2)/N_(2)混合气体的穿透曲线,最终甄选出吸附效果最优的硅胶吸附剂,为后续工业级CO_(2)捕集装置的设计提供参考。 展开更多
关键词 碳捕集 CO_(2) 变压吸附 adsorption 吸附剂
在线阅读 下载PDF
Effect of Magnetron Sputtered Gas on Microstructure and Hydrogen Adsorption Performance of ZrCoRE Films
14
作者 Zhou Chao Ma Zhanji +2 位作者 Li Gang Yang Lamaocao Zhang Huzhong 《稀有金属材料与工程》 北大核心 2025年第6期1451-1456,共6页
ZrCoRE(RE denotes rare earth elements)non-evaporable getter films have significant applications in vacuum packaging of micro-electro mechanical system devices because of their excellent gas adsorption performance,low ... ZrCoRE(RE denotes rare earth elements)non-evaporable getter films have significant applications in vacuum packaging of micro-electro mechanical system devices because of their excellent gas adsorption performance,low activation temperature and environmental friendliness.The films were deposited using DC magnetron sputtering with argon and krypton gases under various deposition pressures.The effects of sputtering gas type and pressure on the morphology and hydrogen adsorption performance of ZrCoRE films were investigated.Results show that the films prepared in Ar exhibit a relatively dense structure with fewer grain boundaries.The increase in Ar pressure results in more grain boundaries and gap structures in the films.In contrast,films deposited in Kr display a higher density of grain boundaries and cluster structures,and the films have an obvious columnar crystal structure,with numerous interfaces and gaps distributed between the columnar structures,providing more paths for gas diffusion.As Kr pressure increases,the film demonstrates more pronounced continuous columnar structure growth,accompanied by deeper and wider grain boundaries.This structural configuration provides a larger specific surface area,which significantly improves the hydrogen adsorption speed and capacity.Consequently,high Ar and Kr pressures are beneficial to improve the adsorption performance. 展开更多
关键词 NEG film magnetron sputtering KRYPTON sputtering pressure hydrogen adsorption performance
原文传递
Hierarchical V_(2)O_(3)spiny hollow nanosphere for efficient adsorption of precious metal ions in complicated matrices 被引量:1
15
作者 Weiyuan Liu Wentao Wang +2 位作者 Jiahui Zhou Hongxia Deng Shanshan Tong 《Journal of Environmental Sciences》 2025年第8期349-364,共16页
Treatment of precious metals in electronic waste has attracted tremendous attention and is essential for both environmental protection and resource sustainable development.In this study,a novel adsorbent for precious ... Treatment of precious metals in electronic waste has attracted tremendous attention and is essential for both environmental protection and resource sustainable development.In this study,a novel adsorbent for precious metal ions,V_(2)O_(3)spiny hollow nanospheres(pV_(2)O_(3)SHN),was synthe sized through a one-step hydrothermal-as sis ted methodology for the adsorption of Au(Ⅲ),Ag(Ⅰ),Pd(Ⅱ),and Pt(Ⅳ) from the leaching solution of electronic waste.The results reveal that the p-V2O3SHN hierarchy was successfully constructed with a hollow structure and dense spiny morphology.The prepared p-V2O3SHN can effectively remove precious metal ions such as Au(Ⅲ),Ag(Ⅰ),Pd(Ⅱ),and Pt(Ⅳ),with the selective capture order being Au(Ⅲ)> Ag(Ⅰ)> Pt(Ⅳ)> Pd(Ⅱ)> other metal ions.This superior adsorption capability can be attributed to the multi-diffusible,intermingled composition,and numerous active sites decorating the p-V2O3SHN hierarchy,facilitating the uptake of Au(Ⅲ),Ag(Ⅰ),Pd(Ⅱ),and Pt(Ⅳ) ions from electronic waste.The Langmuir model provided a better fit for the uptake process,revealing maximum uptake capacities of 833.33 mg/g for Au(Ⅲ),370.37 mg/g for Ag(Ⅰ),42.01 mg/g for Pd(Ⅱ),and 77.51 mg/g for Pt(Ⅳ) on p-V_(2)O_(3)SHN.Remarkably,p-V_(2)O_(3)SHN exhibited a robust affinity for the adsorbate due to the presence of surface defects and reduction reactions.The new p-V2O3SHN also demonstrated good reusability for three sorption cycles,highlighting its potential for electronic waste treatment.Due to its facile synthesis and excellent efficiency,hierarchical p-V2O3SHN presents itself as a promising candidate for the selective uptake of Au(Ⅲ),Ag(Ⅰ),Pt(Ⅳ),and Pd(Ⅱ) from electronic waste. 展开更多
关键词 Hollow V_(2)O_(3)nanosphere adsorption AU(III) AG(I) PD(II) Pt(IV)
原文传递
A propane‑selective metal‑organic framework for inverse selective adsorption propane/propylene separation
16
作者 YANG Shanqing WANG Lulu +3 位作者 ZHANG Qiang LI Jiajia LI Yilong HU Tongliang 《无机化学学报》 北大核心 2025年第10期2138-2148,共11页
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ... We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance. 展开更多
关键词 metal-organic framework propane/propylene separation inverse selective adsorption separation
在线阅读 下载PDF
Anchoring nanoscale zero-valent iron within bacterial cellulose particles for boosting efficient adsorption of Co(Ⅱ) and Sr(Ⅱ) from seawater: Dual system and varying adsorption mechanisms
17
作者 Rong Cheng Yating Chen +5 位作者 Mi Kang Peiwen Jiang Lei Shi Jianzhong Zheng Xiang Zheng Jianlong Wang 《Journal of Environmental Sciences》 2025年第8期457-469,共13页
Increasing attention has been paid to radioactive wastewater to direct discharge in Japan or accidental leaks.Strontium-90(90Sr)and Cobalt-60(^(60)Co)are the most hazardous nuclides in waste discharged form nuclear re... Increasing attention has been paid to radioactive wastewater to direct discharge in Japan or accidental leaks.Strontium-90(90Sr)and Cobalt-60(^(60)Co)are the most hazardous nuclides in waste discharged form nuclear reactors.Because of their high solubility and long half-lives,these radioisotopes can persist for hundreds of years before decaying to negligible levels.Herein,a green and biodegradable material nanoscale zero-valent iron(nZVI)supported by bacterial cellulose particles(BCP-nZVI)is constructed for the first time to adsorb Co^(2+)and Sr^(2+)in single and binary systems.BCP-nZVI shows superior adsorption capacities of Co^(2+)and Sr^(2+)in a single system within a wide range of pH values from 5 to 7,while the coexistence of Co^(2+)adsorption inhibits the Sr^(2+)in binary system.Pseudo-second-order dynamics model and Langmuir isothermal model can be indicated the BCP-nZVI adsorption progress with 107.10 mg/g(Co^(2+))and 64.96 mg/g(Sr^(2+))maximum adsorption capacity.BCP-nZVI has outstanding stability,allowing it to be stored for more than one month with compromising its performance.More importantly,BCP-nZVI exhibits exceptional removal efficiency of Co^(2+)(92.53%)and Sr^(2+)(58.62%)removal in natural seawater systems.The mechanism investigation illustrates the high adsorption capacity of BCP-nZVI for Co^(2+)is controlled by redox and hydroxyl complexation.While Sr^(2+)is controlled by hydroxyl complexed adsorption,thus it has weak against interference by cations like Na^(+),Ca^(2+),etc.BCP-nZVI exhibits the advantages of high adsorption capacity,wide pH range,strong stability,and good applicability in natural seawater,which has excellent potential for application in radioactive ions removal. 展开更多
关键词 NZVI Bacterial cellulose RADIONUCLIDE adsorption adsorption mechanism
原文传递
Coal gasification fine slag and nitrogen-containing waste co-hydrothermal preparation of porous materials for CO_(2)adsorption
18
作者 WANG Qingyun LIU Xiaqing +2 位作者 MA Li LÜPeng BAI Yonghui 《燃料化学学报(中英文)》 北大核心 2025年第10期1553-1568,共16页
A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorptio... A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications. 展开更多
关键词 coal gasification fine slag nitrogen-containing waste hydrothermal porous materials CO_(2)adsorption
在线阅读 下载PDF
Influence law of pore water storage characteristics on the gas adsorption characteristics of coal
19
作者 Aikun Chen Cheng Zhai +6 位作者 Yuliang Cai Yong Sun Xu Yu Jizhao Xu Yuzhou Cong Yangfeng Zheng Wei Tang 《International Journal of Mining Science and Technology》 2025年第9期1461-1476,共16页
This study mainly investigates the influence of pore water characteristics on the adsorption properties of coalbed methane through integrated low field nuclear magnetic resonance(LF-NMR),adsorption experiments,and mol... This study mainly investigates the influence of pore water characteristics on the adsorption properties of coalbed methane through integrated low field nuclear magnetic resonance(LF-NMR),adsorption experiments,and molecular dynamics(MD)simulations.Pore water states in three coal ranks were characterized during progressive hydration.Multi-scale analysis revealed how pore water evolution regulates methane adsorption processes.During the diffusion-dominated stage(M2-M3),adsorbed water penetrates into the micropores.In the highly wettable brown coal(L1),the adsorbed water content reaches 2.12 g while in the anthracite(A1),it is only 0.29 g.During the active water injection stage(M4-M6),non-adsorbed water dominates in anthracite(over 85%of the total water content of 4.01 g),while adsorbed water remains dominant in lignite(over 60%of the total water content of 3.52 g).Water content plays a key role in methane adsorption in coal.During the water addition phase,the influence of methane adsorption on medium-to-low-rank coal is relatively weak,while the methane adsorption capacity of high-rank coal A1 shows a significant decrease during both the water diffusion and water addition phases,corresponding to a reduction in Langmuir volume of 21.22 cm^(3)/g.Molecular dynamics(MD)results further show that the free energy between molecules on the surface of hydroxyl-modified coal increases,with hydroxyl groups driving electrostatic interactions between coal and water molecules.Increased steric hindrance inhibits hydrogen bond formation and reduces the rate of hydrogen bond growth.There is a significant correlation between pore water content and coal-water molecular interaction energy,which cross-scale validates the results of LF-NMR testing and MD simulations. 展开更多
关键词 Coal rank Pore water storage Gas adsorption Langmuir-like Competitive adsorption Cross-scale
在线阅读 下载PDF
Mechanisms of competitive adsorption and diffusion of ethyl sulfide and n-butyl mercaptan with cyclohexene in FAU:MC and MD
20
作者 Dongdong Chen Pei Xue +3 位作者 Dongyang Liu Yuhao Zhang Liang Zhao Jinsen Gao 《Chinese Journal of Chemical Engineering》 2025年第9期280-293,共14页
An in-depth understanding of the competition mechanism between olefins and different types of sulfides in gasoline is essential to improve the desulfurization selectivity of the adsorption desulfurization process(ADS)... An in-depth understanding of the competition mechanism between olefins and different types of sulfides in gasoline is essential to improve the desulfurization selectivity of the adsorption desulfurization process(ADS).In this study,the competitive adsorption and diffusion mechanism of two systems,diethyl sulfide/cyclohexene and n-butyl mercaptan/cyclohexene,with different adsorption amounts in siliceous faujasite zeolite(FAU) were investigated by Monte Carlo(MC) and molecular dynamics(MD).The systems exhibited a two-stage loading-dependent competitive adsorption and diffusion mechanism,with an inflection point of 32 molecule/UC(moleculers per microcoulomb).Before the inflection point(4-32molecule/UC),the competition mechanism of the two systems was the "optimal-displacement" mechanism.After the inflection point,the mechanism of the diethyl sulfide/cyclohexene changed to "relocation-displacement",while that of the n-butyl mercaptan/cyclohexene system changed to "dominantdisplacement".Compared to ether functional groups,the alcohol functional group has higher polarity and stronger adsorption stability,thus occupying more favorable adsorption sites within the supercages(SCs),while ethyl sulfide shifts outward to other sites within other SCs.In addition,the diffusion performance of adsorbent is related to the adsorption energy.The lower the adsorption energy,the weaker the diffusion ability.Meanwhile,the diffusion performance of adsorbates is better at high temperatures and low adsorption capacity.The effect of temperatu re on the desulfu rization selectivity was determined.A lower temperature is favorable for the adsorption capacity of the two systems and the removal selectivity of sulfides.This study provides fundamental insights into the competitive adsorption and diffusion mechanisms among sulfides,mercaptans and olefins,offering theoretical guidance for adsorbent design and reaction temperature optimization. 展开更多
关键词 Competitive adsorption and diffusion adsorption desulfurization FAU Monte Carlo Molecular dynamics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部