期刊文献+
共找到181,841篇文章
< 1 2 250 >
每页显示 20 50 100
Micro-arc oxidization fabrication and ethanol sensing performance of Fe-doped TiO_2 thin films 被引量:4
1
作者 Fu-jian Ren Xiao-bai Yu +1 位作者 Yun-han Ling Jia-you Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期461-466,共6页
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measur... In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+. 展开更多
关键词 thin films titanium dioxide doping iron micro-arc oxidation ethanol sensors
在线阅读 下载PDF
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
2
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide 被引量:2
3
作者 Jin-Xiu Li Jun-Xiu Chen +6 位作者 M.A.Siddiqui S.K.Kolawole Yang Yang Ying Shen Jian-Ping Yang Jian-Hua Wang Xu-Ping Su 《Acta Metallurgica Sinica(English Letters)》 2025年第1期45-58,共14页
Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates... Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness. 展开更多
关键词 NANO-ZNO micro-arc oxidation(MAO)coating ZK60 alloy Corrosion behavior Antibacterial characteristics
原文传递
Effect of SiO_(2) Nanoparticles/Silicate on Characteristics of Micro-arc Oxidation Coating Formed on TC4 Alloy
4
作者 Sun Fengyu Yang Zhao +4 位作者 Hu Jie Gong Yunbai Wang Ping Luo Qiming Zhu Manlan 《稀有金属材料与工程》 北大核心 2025年第1期76-83,共8页
TC4 micro-arc oxidation(MAO)coatings were prepared by adding SiO_(2) nanoparticles or sodium silicate to the sodium meta-aluminate-based electrolyte.The effect of additives was investigated by XRD,SEM,EDS,electrochemi... TC4 micro-arc oxidation(MAO)coatings were prepared by adding SiO_(2) nanoparticles or sodium silicate to the sodium meta-aluminate-based electrolyte.The effect of additives was investigated by XRD,SEM,EDS,electrochemical and wear tests.The results show that additives can considerably accelerate the formation of MAO coatings.The coatings are mostly composed of rutile and anatase TiO_(2),α-Al_(2)O_(3),γ-Al_(2)O_(3),Al_(2)TiO_(5) and SiO_(2).Sodium silicate and SiO_(2) nanoparticles added to the coating can effectively reduce the size of micropores and increase its thickness,whereas SiO_(2) nanoparticles with superior physical properties can be directly deposited at the discharge channel,significantly increasing the coating's resistance to wear and corrosion.The coating with SiO_(2) nanoparticles exhibits the best overall performance,with the lowest corrosion rate and average friction coefficient of 4.095×10^(-5)mm/a and 0.30,respectively. 展开更多
关键词 micro-arc oxidation TC4 alloy COATINGS CORROSION wea
原文传递
Preparation and Corrosion Resistance Mechanism of Magnesium-Lithium Alloy Micro-arc Oxidation/Quaternary LDHs@GO Self-healing Composite Film
5
作者 Zhenzhen Tian Rongqian Wu +7 位作者 Fubing Yu Yan Zhou Wenhui Yao Yuan Yuan Zhihui Xie Yanlong Ma Atrens Andrej Liang Wu 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1545-1558,共14页
Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports t... Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports the successful hydrothermal preparation of a MgLiAlCe-LDHs@GO flm on a MAO-coated Mg–Li alloy following Ce confnement.The graphene oxide(GO)sheet increased the difusion path of the corrosive media,and the addition of rare-earth cerium ions(Ce^(3+))endowed the flm with a certain self-healing ability,which signifcantly improved the corrosion resistance of the flm,and the corrosion current density(icorr)reached 3.27×10^(−8)A cm^(−2).The synergistic action of GO and Ce^(3+)can achieve long-term corrosion protection for the substrate.The corrosion resistance mechanism of MgLiAlCe-LDHs@GO flm was discussed by the scanning vibration electrode technique(SVET). 展开更多
关键词 micro-arc oxidation(MAO) Magnesium-lithium alloy Quaternary layer doubled hydroxides(LDHs) Graphene oxide Corrosion mechanism
原文传递
Effects of cerium oxide doping on performance characteristics of nickel-based black coatings
6
作者 QIN Zizhou CHEN Liyang +5 位作者 YANG Yumeng MAO Xifeng ZHU Benfeng GUO Weirong WEI Guoying ZHANG Luhan 《电镀与精饰》 北大核心 2026年第1期25-38,共14页
Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon ... Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance. 展开更多
关键词 nickel-based coatings black coatings Ce oxide protective properties
在线阅读 下载PDF
Discovery of a Novel Ginseng Polysaccharide:Structure Characterization,in vitro Fermentability and Anti-oxidative Mechanism of Fermented Product via the Nrf2/HO-1 Pathway on Aβ-induced-PC 12 Cells
7
作者 DONG Binbin HOU Zong +3 位作者 ZHENG Zhong XING Junpeng LIU Zhiqiang LIU Shu 《高等学校化学学报》 北大核心 2026年第1期173-189,共17页
In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented... In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs. 展开更多
关键词 Ginseng polysaccharide Structural characterization Intestinal microbiota FERMENTABILITY oxidative stress
在线阅读 下载PDF
Determining the Effect of Grain Size on the Microstructure and Oxidation of Nuclear Graphite
8
作者 Xu Qiao Xinlei Cao +6 位作者 Yuying Zhang Wei Chen Chunzhen Yang Zhengcao Li Xing Zhou Ke Shen Zhou Zhou 《Carbon Energy》 2026年第1期138-152,共15页
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,... Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors. 展开更多
关键词 DIFFUSION nuclear graphite oxidATION pore structure reaction rate
在线阅读 下载PDF
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
9
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
Improving Efficiency of Light Pressure Electric Generator Using Graphene Oxide Nanospacer Between Ag Nanoparticles
10
作者 Ha Young Lee Sung-Hyun Kim +3 位作者 Sun-Lyeong Hwang Hyung Soo Ahn Heedae Kim Sam Nyung Yi 《Carbon Energy》 2026年第1期38-47,共10页
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct... Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices. 展开更多
关键词 Ag nanoparticles energy harvesting graphene oxide light pressure PIEZOELECTRIC
在线阅读 下载PDF
Systematic review of mitochondrial dysfunction and oxidative stress in aging:A focus on neuromuscular junctions
11
作者 Senlin Chai Ning Zhang +8 位作者 Can Cui Zhengyuan Bao Qianjin Wang Wujian Lin Ronald Man Yeung Wong Sheung Wai Law Rebecca Schönmehl Christoph Brochhausen Wing Hoi Cheung 《Neural Regeneration Research》 2026年第5期1947-1960,共14页
Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pa... Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia. 展开更多
关键词 AGING mitochondrial dysfunction neuromuscular junction oxidative stress SARCOPENIA systematic review
暂未订购
Degradation of leachate and high concentration emerging pollutant tetracycline through electro oxidation
12
作者 Siyi Li Qiaona Xie +3 位作者 Mingdi Yang Ningrui Wu Yiting Lian Chengran Fang 《Journal of Environmental Sciences》 2026年第1期142-153,共12页
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti... In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms. 展开更多
关键词 Particle electrodes TETRACYCLINE Landfill leachate Three-dimensional electrocatalytic oxidation Degradation mechanism
原文传递
Spray-dried MOF-derived bimetallic oxide/carbon hybrids with superior electron transfer capability for catalyzing ammonium perchlorate decomposition
13
作者 Tianjin Zhi Dongze Li +3 位作者 Yan Li Zhenxin Yi Shunguan Zhu Lin Zhang 《Defence Technology(防务技术)》 2026年第1期224-240,共17页
The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performa... The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application. 展开更多
关键词 Metal-organic framework derivatives Combustion catalyst Binary transition metal oxides Ammonium perchlorate
在线阅读 下载PDF
Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations 被引量:13
14
作者 郭惠霞 马颖 +3 位作者 王劲松 王宇顺 董海荣 郝远 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1786-1793,共8页
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions... Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h. 展开更多
关键词 micro-arc oxidation coating AZ91D magnesium alloy corrosion behavior chloride ion concentration electrochemical techniques
在线阅读 下载PDF
Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation 被引量:11
15
作者 项南 宋仁国 +3 位作者 赵坚 李海 王超 王芝秀 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3323-3328,共6页
The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc o... The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings. 展开更多
关键词 6063 aluminium alloy micro-arc oxidation MICROSTRUCTURE mechanical properties nanoadditive
在线阅读 下载PDF
Oxidative potential of PM_(2.5) in Guangzhou,Southern China:Source apportionment and association with airborne bacteria
16
作者 Yuxin Huang Senchao Lai +7 位作者 Baoling Liang Jinpu Zhang Chenglei Pei Dachi Hong Xiaoluan Lin Zhaokang Ruan Leitao Sun Yingyi Zhang 《Journal of Environmental Sciences》 2026年第1期64-72,共9页
Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China ... Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP. 展开更多
关键词 oxidative potential PM_(2.5) Source apportionment Positive matrix factorization Airborne bacteria
原文传递
Surface modification of biomedical magnesium alloy wires by micro-arc oxidation 被引量:11
17
作者 储成林 韩啸 +2 位作者 白晶 薛烽 朱剑豪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1058-1064,共7页
Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composit... Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composite electrolyte on the microstructure and properties of the MAO ceramic coatings on magnesium alloy wires were studied. It is found that the arc voltage of magnesium alloy wires in the micro-arc oxidation process is significantly reduced while the oxidation rate is accelerated. Addition of 2 g/L NaOH in the composite electrolyte is a better choice for improving corrosion resistance of magnesium alloy wires. During early simulated body fluids (SBF) immersion, the micro-arc oxidized magnesium alloy wires undergo a slow and stable degradation. After soaking for 28 d, the protective ceramic coating still shows no damage but significant degradation is observed for magnesium alloy wires after immersion for more than 60 d. 展开更多
关键词 magnesium alloy wire HYDROXYAPATITE micro-arc oxidation corrosion resistance
在线阅读 下载PDF
An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping
18
作者 Juanjuan Tu Shanshan Jiang +7 位作者 Yujia Wang Weitao Hu Lingyan Cheng Jingjing Jiang Huangang Shi Beibei Xiao Chao Su Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期322-334,共13页
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0... This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells. 展开更多
关键词 molybdenum doping cathodic performance oxygen reduction reaction low-temperature solid oxide fuel cells
在线阅读 下载PDF
Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling
19
作者 Le Zong Lingxin Li +8 位作者 Lantian Zhang Xuecheng Jin Yong Zhang Wenfeng Yang Pengfei Liu Bin Gan Liujie Xu Yuanshen Qi Wenwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期292-305,共14页
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa... Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%. 展开更多
关键词 oxide dispersion strengthened Cu alloys constitutive model machine learning hot deformation processing maps
在线阅读 下载PDF
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
20
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部