期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multi-channel microelectrode arrays for detection of single-cell level neural information in the hippocampus CA1 under general anesthesia induced by low-dose isoflurane 被引量:1
1
作者 Ruilin Hu Penghui Fan +9 位作者 Yiding Wang Jin Shan Luyi Jing Wei Xu Fan Mo Mixia Wang Yan Luo Ying Wang Xinxia Cai Jinping Luo 《Fundamental Research》 2025年第1期72-81,共10页
Timely monitoring of anesthesia status during surgery is important to prevent an overdose of isoflurane anesthesia.Therefore,in-depth studies of the neural mechanisms of anesthetics are warranted.Hippocampal CA1 plays... Timely monitoring of anesthesia status during surgery is important to prevent an overdose of isoflurane anesthesia.Therefore,in-depth studies of the neural mechanisms of anesthetics are warranted.Hippocampal CA1 plays an important role during anesthesia.Currently,a high spatiotemporal resolution microdevice technology for the accurate detection of deep brain nuclei is lacking.In this research,four-shank 32-channel implantable microelectrode arrays(MEAs)were developed for the real-time recording of single-cell level neural information in rat hippocampal CA1.Platinum nanoparticles were modified onto the microelectrodes to substantially enhance the electrical properties of the microelectrode arrays.The modified MEAs exhibited low impedance(11.5±1 kΩ)and small phase delay(-18.5°±2.54°),which enabled the MEAs to record single-cell level neural information with a high signal-to-noise ratio.The MEAs were implanted into the CA1 nuclei of the anesthetized rats,and the electrophysiological signals were recorded under different degrees of anesthesia mediated by low-dose concentrations of isoflurane.The recorded signals were analyzed in depth.Isoflurane caused an inhibition of spike firing rate in hippocampal CA1 neurons,while inducing low-frequency oscillations in CA1,thus enhancing the low-frequency power of local field potentials.In this manner,the spike firing rate and the power of local field potentials in CA1 could characterize the degree of isoflurane anesthesia.The present study provides a technical tool to study the neural mechanisms of isoflurane anesthesia and a research method for monitoring the depth of isoflurane anesthesia in clinical practice. 展开更多
关键词 micro electrode array Hippocampal CA1 Isoflurane anesthesia SPIKE Local field potentials
原文传递
RESEARCH OF MICRO ELECTRO DISCHARGE MACHINING EQUIPMENT AND PROCESS TECHNIQUES
2
作者 Li Yong Guo Min Li Fang Zhou Zhaoying Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第2期177-181,共5页
Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay caref... Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay careful attention to its equipment design and thedevelopment of process techniques. The present status of research and development of micro EDMequipment and process techniques is overviewed. A micro electro discharge machine incorporated withan inchworm type of micro feed mechanism is introduced, and a micro electro discharge machine fordrilling micro holes suitable to industrial use is also introduced. Some of the machiningexperiments carried out on the micro EDM prototypes are shown and the feasibility of the micro EDMtechnology to practical use is discussed. 展开更多
关键词 micro electro discharge machining Inchworm mechanism Friction drivemechanism micro electrode micro hole micro structure
在线阅读 下载PDF
Micro EEG/ECG signal's chopper-stabilization amplifying chip for novel drycontact electrode 被引量:1
3
作者 Jianhui Sun Chunxing Wang +8 位作者 Gongtang Wang Jinhui Wang Qing Hua Chuanfu Cheng Xinxia Cai Tao Yin Yang Yu Haigang Yang Dengwang Li 《Journal of Semiconductors》 EI CAS CSCD 2017年第2期96-104,共9页
Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro sign... Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value. 展开更多
关键词 EEG/ECG novel dry-contact electrode weak and micro signal detection chopping modulation/demodulation de-noising gain/band width digitally tuning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部