This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model...This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation.展开更多
The main attention of this paper was devoted to the study of the effect of different cooling rates on the magnetic domain configuration and magnetostrictive behavior of heat-treated Fe-15 at% Ga alloy. After annealing...The main attention of this paper was devoted to the study of the effect of different cooling rates on the magnetic domain configuration and magnetostrictive behavior of heat-treated Fe-15 at% Ga alloy. After annealing at 1,000℃ for 3 h, the samples were subjected to water quenching, air cooling, and furnace cooling treatments. Phase constitution and magnetic domain structures of the samples were studied using X-ray diffraction (XRD) and magnetic force microscopy (MFM). XRD results indicate a single phase of α-Fe with disordered bcc (A2) structure for all samples. MFM results show that both water-quenched (WQ) and air-cooled (AC) samples are mainly made from ordered stripe domain structures, whereas a mixture of irregular stripe, zigzag, and plate domain patterns are observed in furnace-cooled (FC) sample. Magnetostrictive strain was measured in the presence of an extemally applied magnetic field. It is found that WQ sample has the highest magnetostriction, while AC and FC samples exhibit moderate and the lowest magnetostriction, respectively, against the applied field. The dependence of initial domain configurations on thermal history is found to be conducive to the change in saturation magnetostrictions of the samples.展开更多
Based on the time series of GPS station coordinate in the international Earth reference frame (ITRF), we evaluate annual micro-behavior of strain field in Chinese mainland with the triangle method. The results show ...Based on the time series of GPS station coordinate in the international Earth reference frame (ITRF), we evaluate annual micro-behavior of strain field in Chinese mainland with the triangle method. The results show that the annual micro-behavior of strain field is divided into two parts by the north-south earthquake belt in the research region. The prevailing direction of compressive principal strain field is nearly consistent in the western region. From west to east, the direction varies from NS to NE. It is in accordance with the direction of the modem compressive principal strain field. This suggests that geologic deformation in western region was mainly caused by that India tectonic plate pushes the research region northward and the Siberia plate pushes it southward relatively. It is an inheritance of new tectonic motion. The prevailing direction of the compressive principal strain field does not exist in the eastern region .The annual biggest shear strain is different greatly in every grid-cell. The values varies from 4.13×10^-8 to 7.0×10^-10. By and large the annual biggest shear strain in the western region is bigger than that in the eastern region. And so is the variation between any two consecutive biggest annual shear strains in the same grid-cell. The annual surface dilatation show that in most grid-cells of the research region the surface dilatation is in compressibility, and the variation between any two consecutive annual surface dilatation in the same grid-cell is small.展开更多
The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and m...The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro.展开更多
Given the difficulty in hand coding task schemes, an intellectualized architecture of the autonomous micro mobile robot based behavior for fault repair was presented. Integrating the reinforcement learning and the...Given the difficulty in hand coding task schemes, an intellectualized architecture of the autonomous micro mobile robot based behavior for fault repair was presented. Integrating the reinforcement learning and the group behavior evolution simulating the human's learning and evolution, the autonomous micro mobile robot will automatically generate the suited actions satisfied the environment. However, the designer only devises some basic behaviors, which decreases the workload of the designer and cognitive deficiency of the robot to the environment. The results of simulation have shown that the architecture endows micro robot with the ability of learning, adaptation and robustness, also with the ability of accomplishing the given task.展开更多
The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fibe...The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.展开更多
Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking...Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimen- tal results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 lam and the reduction level was less than 60%.展开更多
Very high cycle fatigue behavior (107 --109 cycles) of 304L austenitic stainless steel was studied with ultra- sonic fatigue testing system (20 kHz). The characteristics of fatigue crack initiation and propagation...Very high cycle fatigue behavior (107 --109 cycles) of 304L austenitic stainless steel was studied with ultra- sonic fatigue testing system (20 kHz). The characteristics of fatigue crack initiation and propagation were discussed based on the observation of surface plastic deformation and heat dissipation. It was found that micro-plasticity (slip markings) could be observed on the specimen surface even at very low stress amplitudes. The persistent slip mark- ings increased clearly along with a remarkable process of heat dissipation just before the fatigue failure. By detailed investigation using a scanning electron microscope and an infrared camera, slip markings appeared at the large grains where the fatigue crack initiation site was located. The surface temperature around the fatigue crack tip and the slip markings close to the fracture surface increased prominently with the propagation of fatigue crack. Finally, the cou- pling relationship among the fatigue crack propagation, appearance of surface slip markings and heat dissipation was analyzed for a better understanding of ultrasonic fatigue damage behavior.展开更多
Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the...Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the formation mechanisms and tribological behaviors of the coatings. Scanning electron microscopy (SEM) assisted with energy-dis- persive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and friction test were employed to charac- terize the MAO processes and microstructure of the resultant coatings. Results showed that the composition and microstructure of the coatings were significantly affected by the addition of KETiO(CaO4)2. A sealing microstructure of MAO coating was obtained with the addition of K2TiO(C2O4)2. Ti element from K2TiO(C2O4)2 was only absorbed into the defects of micropores under surface energy in the early stage, while in the later stage, Ti element was predominant in the micropores and distributed on the coatings under plasma discharge to form TiO2. It was demonstrated that Ti and Si elements from the electrolyte could interact with each other during the MAO process and the interaction mechanism was systematically analyzed. Wear resistance of the MAO coatings with K2TiO(C2O4)2 addition was significantly improved compared with that of the MAO coatings without K2TiO(C2O4)2 addition.展开更多
Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion...Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion system is quaternary ammonium cationic Gemini surfactant, the surfactant mainly combines with the anions in the salt. With the increase of salt concentration, the phase transformation of Winsor I → Winsor III → Winsor II occurred, but the optimum salinity and salt width are different because of the type of salt. The effects of 5 different kinds of monovalent anions, including C_6H_5SO_3^-, I-, Br-, NO_3^- and Cl-, on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are researched by Winsor phase diagram. It is found that the effects of organic anions C_6H_5SO_3-and I-on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are most significant, and the effects of Br-, NO_3^- and Cl-are less significant. Meanwhile, when the optimum solubilization is achieved, the amount of sodium benzoate is the least, indicating that the organic anion has stronger self-organization behavior with quaternary ammonium cationic Gemini surfactants.展开更多
Little is known about the ecology of the Chinese Giant Salamander(Andrias davidianus), a critically endangered species. Such information is needed to make informed decisions concerning the conservation and management ...Little is known about the ecology of the Chinese Giant Salamander(Andrias davidianus), a critically endangered species. Such information is needed to make informed decisions concerning the conservation and management of this species. Four A. davidianus raised in a pool were released into their native habitat on 04 May 2005 and were subsequently radio-tracked for approximately 155–168 days. Following their release, the giant salamanders traveled upstream in search of suitable micro-habitats, and settled after 10 days. Later, a devastating summer flash flood destroyed the salamanders' dens, triggering another bout of habitat searching by the animals. Eventually, the salamanders settled in different sections of the stream where they remained until the end of the study. On average, each habitat searching endeavor took 7.5 days, during which a giant salamander explored a 310 m stretch of stream with a surface area of about 1157 m2 and occupied 3.5 temporary dwellings. Each giant salamander spent an average of 144.5 days in semi-permanent micro-habitats, and occupied territories that had a mean size of 34.75 m2. Our results indicate that the Chinese giant salamander responds to habitat disturbance by seeking new habitats upstream, both water temperature and water level affect the salamander's habitat searching activity, and the size of the salamander's semi-permanent territory is influenced by the size of the pool containing the animal's den.展开更多
Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale...Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale fibers with mean diameter ranging from approximately 363 nm to 179 nm. It was observed that the mean diameters of PVA/COL electrospun fibers decreased with increasing collagen content. The effects of PVA/COL blending ratio on the rheological behavior of PVA/COL blended solutions were investigated by rotate rheometer. It was found that PVA/COL blended solutions behaved as Non-Newtonian fluids. With increasing collagen content, the Non-Newtonian index (n) of PVA/COL blended solutions decreased. Meanwhile, a linear relationship was found between the Non-Newtonian index (n) and the mean diameters of the PVA/COL micro- nanofibers. The chemical structures of PVA/COL electrospun fibers were also characterized by FTIR.展开更多
The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exh...The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exhibits chaos.Strange attractors of the system are plotted to validate its chaotic behavior.Afterward,a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time.Using the latest version of the fractional Lyapunov theory,the finite time stability and robustness of the proposed scheme are proved.Finally,we present some computer simulations to illustrate the usefulness and applicability of the proposed method.展开更多
A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear beh...A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.展开更多
Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electr...Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase.展开更多
For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and...For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and low density besides its ability to retain strength and stiffness at elevated temperatures. However NiAl intermetallic is too hard, brittle and exhibits very low ductility at room temperature being the reason because this material is not yet available for structural applications. In order to increase the ductility of the NiAl intermetallic compound, the addition of a third alloying element has been proved, nevertheless it is important to determine if such additions decrease or increase the hardness and the corrosion resistance of the alloy. So, the present investigation reports the corrosion performance of the NiAl intermetallic compound modified with Cu, emphasizing the EIS analysis and the relation between physical parameters and the modelling equations used in the Equivalent Electric Circuit. It was found that the addition of Cu promotes the formation of the γ’-Ni<sub>3</sub>Al phase in Cu contents greater than 15 at. %, in addition to a decrease in micro hardness and an increment in the I<sub>corr</sub> values. In this way, the electrochemical characterization evidenced a high corrosion resistance of these intermetallic alloys.展开更多
基金Aeronautical Basic Science Foundation of China (03H53048)
文摘This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation.
基金the support of Center of Excellence for High Performance Materials(CEPMAT)at University of Tehran for providing vacuum arc melting
文摘The main attention of this paper was devoted to the study of the effect of different cooling rates on the magnetic domain configuration and magnetostrictive behavior of heat-treated Fe-15 at% Ga alloy. After annealing at 1,000℃ for 3 h, the samples were subjected to water quenching, air cooling, and furnace cooling treatments. Phase constitution and magnetic domain structures of the samples were studied using X-ray diffraction (XRD) and magnetic force microscopy (MFM). XRD results indicate a single phase of α-Fe with disordered bcc (A2) structure for all samples. MFM results show that both water-quenched (WQ) and air-cooled (AC) samples are mainly made from ordered stripe domain structures, whereas a mixture of irregular stripe, zigzag, and plate domain patterns are observed in furnace-cooled (FC) sample. Magnetostrictive strain was measured in the presence of an extemally applied magnetic field. It is found that WQ sample has the highest magnetostriction, while AC and FC samples exhibit moderate and the lowest magnetostriction, respectively, against the applied field. The dependence of initial domain configurations on thermal history is found to be conducive to the change in saturation magnetostrictions of the samples.
基金National Natural Science Foundation of China (40074024).
文摘Based on the time series of GPS station coordinate in the international Earth reference frame (ITRF), we evaluate annual micro-behavior of strain field in Chinese mainland with the triangle method. The results show that the annual micro-behavior of strain field is divided into two parts by the north-south earthquake belt in the research region. The prevailing direction of compressive principal strain field is nearly consistent in the western region. From west to east, the direction varies from NS to NE. It is in accordance with the direction of the modem compressive principal strain field. This suggests that geologic deformation in western region was mainly caused by that India tectonic plate pushes the research region northward and the Siberia plate pushes it southward relatively. It is an inheritance of new tectonic motion. The prevailing direction of the compressive principal strain field does not exist in the eastern region .The annual biggest shear strain is different greatly in every grid-cell. The values varies from 4.13×10^-8 to 7.0×10^-10. By and large the annual biggest shear strain in the western region is bigger than that in the eastern region. And so is the variation between any two consecutive biggest annual shear strains in the same grid-cell. The annual surface dilatation show that in most grid-cells of the research region the surface dilatation is in compressibility, and the variation between any two consecutive annual surface dilatation in the same grid-cell is small.
基金Funded by the Natural Science Fundation of Zhejiang Province(Nos.Y2080956 and Y4110169)the National Natural Science Foundation of China(Nos.51102211,and 20934003)the Science and Technique Plans of Wenzhou City(Nos.Y20070093 and H20100076)
文摘The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro.
文摘Given the difficulty in hand coding task schemes, an intellectualized architecture of the autonomous micro mobile robot based behavior for fault repair was presented. Integrating the reinforcement learning and the group behavior evolution simulating the human's learning and evolution, the autonomous micro mobile robot will automatically generate the suited actions satisfied the environment. However, the designer only devises some basic behaviors, which decreases the workload of the designer and cognitive deficiency of the robot to the environment. The results of simulation have shown that the architecture endows micro robot with the ability of learning, adaptation and robustness, also with the ability of accomplishing the given task.
基金This work is supported by the National Natural Science Foundation of China (No. 11622217)
文摘The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.
基金finically supported by the National Natural Science Foundation of China (No. 51474127)the Chinese Scholar Council (No. 201408210289)the Key Laboratory Open Project of Liaoning Province (USTLKFSY201504)
文摘Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimen- tal results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 lam and the reduction level was less than 60%.
基金Item Sponsored by National Natural Science Foundation of China(10925211,11172188)Fundamental Research Funds from the Central Universities of China(2012SCU04A05)
文摘Very high cycle fatigue behavior (107 --109 cycles) of 304L austenitic stainless steel was studied with ultra- sonic fatigue testing system (20 kHz). The characteristics of fatigue crack initiation and propagation were discussed based on the observation of surface plastic deformation and heat dissipation. It was found that micro-plasticity (slip markings) could be observed on the specimen surface even at very low stress amplitudes. The persistent slip mark- ings increased clearly along with a remarkable process of heat dissipation just before the fatigue failure. By detailed investigation using a scanning electron microscope and an infrared camera, slip markings appeared at the large grains where the fatigue crack initiation site was located. The surface temperature around the fatigue crack tip and the slip markings close to the fracture surface increased prominently with the propagation of fatigue crack. Finally, the cou- pling relationship among the fatigue crack propagation, appearance of surface slip markings and heat dissipation was analyzed for a better understanding of ultrasonic fatigue damage behavior.
基金supported by the National Science Foundation of China(Grant Nos.51571114 and 51201120)the Science and Technology Coordination and Innovation Project of Shaanxi Province(No.2016KTZDGY-04-01)the Shaanxi Provincial Education Department(Grant No.16JK1377)
文摘Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the formation mechanisms and tribological behaviors of the coatings. Scanning electron microscopy (SEM) assisted with energy-dis- persive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and friction test were employed to charac- terize the MAO processes and microstructure of the resultant coatings. Results showed that the composition and microstructure of the coatings were significantly affected by the addition of KETiO(CaO4)2. A sealing microstructure of MAO coating was obtained with the addition of K2TiO(C2O4)2. Ti element from K2TiO(C2O4)2 was only absorbed into the defects of micropores under surface energy in the early stage, while in the later stage, Ti element was predominant in the micropores and distributed on the coatings under plasma discharge to form TiO2. It was demonstrated that Ti and Si elements from the electrolyte could interact with each other during the MAO process and the interaction mechanism was systematically analyzed. Wear resistance of the MAO coatings with K2TiO(C2O4)2 addition was significantly improved compared with that of the MAO coatings without K2TiO(C2O4)2 addition.
基金Supported by China Petroleum Science and Technology Innovation Fund(2017D-5007-0601)State Key Laboratory of Heavy Oil Processing and China University of Petroleum(East China)2018 Graduate Engineering Innovation Project Found(SLKZZ-2017002)
文摘Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion system is quaternary ammonium cationic Gemini surfactant, the surfactant mainly combines with the anions in the salt. With the increase of salt concentration, the phase transformation of Winsor I → Winsor III → Winsor II occurred, but the optimum salinity and salt width are different because of the type of salt. The effects of 5 different kinds of monovalent anions, including C_6H_5SO_3^-, I-, Br-, NO_3^- and Cl-, on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are researched by Winsor phase diagram. It is found that the effects of organic anions C_6H_5SO_3-and I-on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are most significant, and the effects of Br-, NO_3^- and Cl-are less significant. Meanwhile, when the optimum solubilization is achieved, the amount of sodium benzoate is the least, indicating that the organic anion has stronger self-organization behavior with quaternary ammonium cationic Gemini surfactants.
基金funded by the National Natural Science Foundation of China
文摘Little is known about the ecology of the Chinese Giant Salamander(Andrias davidianus), a critically endangered species. Such information is needed to make informed decisions concerning the conservation and management of this species. Four A. davidianus raised in a pool were released into their native habitat on 04 May 2005 and were subsequently radio-tracked for approximately 155–168 days. Following their release, the giant salamanders traveled upstream in search of suitable micro-habitats, and settled after 10 days. Later, a devastating summer flash flood destroyed the salamanders' dens, triggering another bout of habitat searching by the animals. Eventually, the salamanders settled in different sections of the stream where they remained until the end of the study. On average, each habitat searching endeavor took 7.5 days, during which a giant salamander explored a 310 m stretch of stream with a surface area of about 1157 m2 and occupied 3.5 temporary dwellings. Each giant salamander spent an average of 144.5 days in semi-permanent micro-habitats, and occupied territories that had a mean size of 34.75 m2. Our results indicate that the Chinese giant salamander responds to habitat disturbance by seeking new habitats upstream, both water temperature and water level affect the salamander's habitat searching activity, and the size of the salamander's semi-permanent territory is influenced by the size of the pool containing the animal's den.
基金Funded by the National Natural Science Foundation of China(Nos.21076199,51373158)the Department of Science and Technology of Henan Province(No.124300510)
文摘Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale fibers with mean diameter ranging from approximately 363 nm to 179 nm. It was observed that the mean diameters of PVA/COL electrospun fibers decreased with increasing collagen content. The effects of PVA/COL blending ratio on the rheological behavior of PVA/COL blended solutions were investigated by rotate rheometer. It was found that PVA/COL blended solutions behaved as Non-Newtonian fluids. With increasing collagen content, the Non-Newtonian index (n) of PVA/COL blended solutions decreased. Meanwhile, a linear relationship was found between the Non-Newtonian index (n) and the mean diameters of the PVA/COL micro- nanofibers. The chemical structures of PVA/COL electrospun fibers were also characterized by FTIR.
文摘The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exhibits chaos.Strange attractors of the system are plotted to validate its chaotic behavior.Afterward,a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time.Using the latest version of the fractional Lyapunov theory,the finite time stability and robustness of the proposed scheme are proved.Finally,we present some computer simulations to illustrate the usefulness and applicability of the proposed method.
文摘A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.
基金support of the National Natural Science Foundation of China (No.50571073)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20111402110004)the Natural Science Foundation of Shanxi Province, China (No.2009011028-3)
文摘Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase.
文摘For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and low density besides its ability to retain strength and stiffness at elevated temperatures. However NiAl intermetallic is too hard, brittle and exhibits very low ductility at room temperature being the reason because this material is not yet available for structural applications. In order to increase the ductility of the NiAl intermetallic compound, the addition of a third alloying element has been proved, nevertheless it is important to determine if such additions decrease or increase the hardness and the corrosion resistance of the alloy. So, the present investigation reports the corrosion performance of the NiAl intermetallic compound modified with Cu, emphasizing the EIS analysis and the relation between physical parameters and the modelling equations used in the Equivalent Electric Circuit. It was found that the addition of Cu promotes the formation of the γ’-Ni<sub>3</sub>Al phase in Cu contents greater than 15 at. %, in addition to a decrease in micro hardness and an increment in the I<sub>corr</sub> values. In this way, the electrochemical characterization evidenced a high corrosion resistance of these intermetallic alloys.