The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational i...The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.展开更多
The proposed design of a microwave superconducting kinetic inductance detector(MKID)array readout system characterizes the performance of MKIDs through a digital homodyne frequency mixing architecture.Meanwhile,the re...The proposed design of a microwave superconducting kinetic inductance detector(MKID)array readout system characterizes the performance of MKIDs through a digital homodyne frequency mixing architecture.Meanwhile,the readout system is implemented using a frequency division multiplexing circuit system,coupled with an FFT design to enable the readout of MKID arrays.The system is characterized by its compact size,low cost,portability,and ease of further development.Together,these features have significant implications for the design and readout of terahertz MKID arrays,while simultaneously advancing both the theoretical and practical aspects of MKID technology.展开更多
The SiTian Project represents a groundbreaking initiative in astronomy,aiming to deploy a global network of telescopes,each with a 1 m aperture,for comprehensive time-domain sky surveys.The network's innovative ar...The SiTian Project represents a groundbreaking initiative in astronomy,aiming to deploy a global network of telescopes,each with a 1 m aperture,for comprehensive time-domain sky surveys.The network's innovative architecture features multiple observational nodes,each comprising three strategically aligned telescopes equipped with filters.This design enables three-color(g,r,i)channel imaging within each node,facilitating precise and coordinated observations.As a pathfinder to the full-scale project,the Mini-SiTian Project serves as the scientific and technological validation platform,utilizing three 30 cm aperture telescopes to validate the methodologies and technologies planned for the broader SiTian network.This paper focuses on the development and implementation of the Master Control System(MCS),and the central command hub for the Mini-SiTian Array.The MCS is designed to facilitate seamless communication with the SiTian Brain,the project's central processing and decisionmaking unit,while ensuring accurate task allocation,real-time status monitoring,and optimized observational workflows.The system adopts a robust architecture that separates front-end and back-end functionalities.A key innovation of the MCS is its ability to dynamically adjust observation plans in response to transient source alerts,enabling rapid and coordinated scans of target sky regions.The paper provides an in-depth analysis of the system's internal components,including the communication system,which is critical for seamless network operation.Extensive testing has validated the functionality,reliability,and compatibility of these components within the overall system architecture.The successful deployment of the MCS in managing the Mini-SiTian Array has demonstrated its practicality and efficacy in collaborative observation and distributed control.By simplifying cluster management and ensuring data integrity,the MCS represents a significant advancement in astronomical observation control systems.Its scalable and adaptable design not only supports the future expansion of the SiTian network but also provides a blueprint for other large-scale telescope arrays,marking a transformative step forward in time-domain astronomy.展开更多
We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via...We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.展开更多
Astronomical site selection work is very hard.Unmanned technologies are important trends and solutions.We present a relatively easy method to plan a high reliability site selection which can extend the time from site ...Astronomical site selection work is very hard.Unmanned technologies are important trends and solutions.We present a relatively easy method to plan a high reliability site selection which can extend the time from site deployment to returning for maintaining by unmanned confirming the site.First,we redefine the reliability of a site selection deployment with the parameter of the trusty time,which means when we must return,and which can be relatively easy for estimating.The redefinition makes the reliability parameter as a Bayesian probability,and can be obtained by estimating besides testing,which makes the evaluation of each device's reliability much easier.Then we use block diagram tools in the Matlab Simulink software to construct structure diagram,and to link each component with relations of parallel,serial,protection,and so on.This makes the whole reliability value can be calculated at the time when we design or plan a site selection.We applied this concept and method in an actual site selection in Lenghu,Qinghai Province,China.The survey practice reveals its effectiveness and simpleness.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)will be fully commissioned later in 2019.Once commissioned,operation and maintenance of FAST will be the most prominent task.The unique working mode of ac...The Five-hundred-meter Aperture Spherical radio Telescope(FAST)will be fully commissioned later in 2019.Once commissioned,operation and maintenance of FAST will be the most prominent task.The unique working mode of active shape-changing of FAST cable-net structure makes the traditional maintenance way,which combines routine inspection with preventive maintenances not only expensive,but also unable to effectively avoid potential risks in operations.Therefore,it is necessary to develop an economical and reliable operation/maintenance technology for FAST cable-net structure.In this paper,a Prognostics and Health Management(PHM)system is proposed based on the advanced Digital Twin(DT)technology.Through the finite element analysis of DT model,the current safety status of FAST cablenet is evaluated,and the fatigue life of components in the cable-net is predicted.Hence Condition-Based Maintenance(CBM)of FAST cable-net structure can be realized.The PHM system described in this paper can effectively guarantee the healthy and safe operation of the FAST cable-net structure,greatly improve the maintenance efficiency and reduce the cost for maintenance works.展开更多
The reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is designed to incorporate 4450 rigid panels supported by a flexible cable-net structure. The shapechanging operation that occ...The reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is designed to incorporate 4450 rigid panels supported by a flexible cable-net structure. The shapechanging operation that occurs in the process of observation will lead to a relative displacement between adjacent nodes in the cable-net. In addition, three nodes on a rigid panel are fixed with respect to each other. Thus, adaptive connecting mechanisms between panels and the cable-net are certainly needed. The present work focuses on the following aspects. Firstly, the degrees of freedom of adaptive connecting mechanisms were designed so that we can not only adapt the panel to the deformation of the cable- net, but also restrict the panel to its right place. Secondly, finite element and theoretical analyses were applied to calculate the scope of motion in adaptive connecting mechanisms during the cable-net's shape-changing operation, thus providing input parameters for the design size of the adaptive connecting mechanisms. In addition, the gap size between the panels is also investigated to solve the trade-off between avoiding panel collisions and increasing the observation efficiency of FAST.展开更多
Most reflector surface holographic measurements of a large radio telescope utilize a geostationary satellite as the signal source. The shortcoming is that those measurements could only be done at a limited elevation a...Most reflector surface holographic measurements of a large radio telescope utilize a geostationary satellite as the signal source. The shortcoming is that those measurements could only be done at a limited elevation angle due to the satellite’s relatively stationary state. This paper proposed a new wideband microwave holographic measurement method based on radio sources to achieve full-elevation-angle measurement with small size reference antenna. In theoretical derivation, the time delay and phase change due to path length and device difference between the antenna under test and reference antenna are compensated first. Then the correct method of wideband holography effect, which is because of antenna pattern differing under different wavelengths when receiving a wideband signal, is presented. To verify the proposed methodology, a wideband microwave holographic measurement system is established, the data processing procedure is illustrated, and the reflector surface measurement experiments on a 40 m radio telescope at different elevation angles are conducted. The result shows that the primary reflector surface root-mean-square at around elevation angles of 28°, 44°, 49°, and 75° are respectively 0.213 mm, 0.170 mm, 0.188 mm, and 0.199 mm. It is basically consistent with the real data, indicating that the proposed wideband microwave holography methodology is feasible.展开更多
The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observat...The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observations in the future.The main specifications and measurement results of some properties in the X-band are introduced in this paper,such as pointing calibration,gain and efficiency,system noise temperature,system equivalent flux density,and variations with elevation.The 23 parameters pointing calibration model considering the atmospheric refraction correction in real time is presented in the telescope,and the pointing accuracy reaches 570 in azimuth direction and 607 in elevation direction for different weather conditions.More than 62%efficiencies are achieved at full elevation range,and more than 70%in the mid-elevation.The system equivalent flux density of the X-band in the mid-elevation reaches 26 Jy.展开更多
The transition region is the key region between the lower solar atmosphere and the corona, which has been limitedly understood by human beings. Therefore, the Solar Upper Transition Region Imager(SUTRI) was proposed b...The transition region is the key region between the lower solar atmosphere and the corona, which has been limitedly understood by human beings. Therefore, the Solar Upper Transition Region Imager(SUTRI) was proposed by Chinese scientists and launched in 2022 July. Right now, the first imaging observation of the upper transition region around 46.5 nm has been carried out by SUTRI. To ensure the spectral and temporal resolution of the SUTRI telescope, we have developed a narrowband Sc/Si multilayer. Based on the extreme ultraviolet(EUV)reflectivity measurements, the multilayer structure has been modified for ensuring the peak position of reflectivity was at 46.5 nm. Finally, the narrowband Sc/Si multilayer was successfully deposited on the hyperboloid primary mirror and secondary mirrors. The deviation of multilayer thickness uniformity was below than 1%, and the average EUV reflectivity at 46.1 nm was 27.8% with a near-normal incident angle of 5°. The calculated bandwidth of the reflectivity curve after primary and secondary mirrors was 2.82 nm, which could ensure the requirements of spectral resolution and reflectivity of SUTRI telescope to achieve its scientific goals.展开更多
Estimating and identifying friction are important aspects of simulating a mechanical drive system. Accurate friction modeling helps to improve a telescope's performance. However, the friction conditions inside are...Estimating and identifying friction are important aspects of simulating a mechanical drive system. Accurate friction modeling helps to improve a telescope's performance. However, the friction conditions inside are complex and hard to measure. We did simulations with mathematical transfer functions for the Leighton 10 m Telescope and employed a polyline model to identify sources of friction. We made a two-stage model for the Leighton 10 m Telescope. Based on measurements of the motor's currents and speeds, we constructed a curve containing the friction information of the transmission elements. We simulated the system using a step function input under many combinations of friction parameters. By comparing simulation results with the measured ones, we determined the various friction components. This model accurately reproduced the telescope performance including the nonlinearities.展开更多
This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemica...This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring.The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process,the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME(first solve the machined surface profile, then solve the system errors) and EM(first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to0.160 nm rms.展开更多
The Beijing Faint Object Spectrograph and Camera (BFOSC) is one of the most important instruments operating in conjunction with the 2.16-m telescope at Xinglong Observatory. Every year there are - 20 SCI-papers publ...The Beijing Faint Object Spectrograph and Camera (BFOSC) is one of the most important instruments operating in conjunction with the 2.16-m telescope at Xinglong Observatory. Every year there are - 20 SCI-papers published based on observational data acquired with this telescope. In this work, we have systemically measured the total efficiency of the BFOSC that operates as part of the 2.16-m reflector, based on observations of two ESO flux standard stars. We have obtained the total efficiencies of the BFOSC instrument of different grisms with various slit widths in almost all ranges, and analyzed factors which effect the efficiency of this telescope and spectrograph. For astronomical observers, the result will be useful for them to select a suitable slit width, depending on their scientific goals and weather conditions during observations. For technicians, the result will help them to systemically identify the real efficiency of the telescope and spectrograph, and to further improve the total efficiency and observing capacity of the telescope technically.展开更多
A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror, and so the larger version is always pursued by astronomers and astronomical technici...A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror, and so the larger version is always pursued by astronomers and astronomical technicians. Instead of using a monolithic primary mirror, more and more large telescopes, which are currently being planned or in construction, have adopted a segmented primary mirror design. Therefore, how to sense and phase such a primary mirror is a key issue for the future of extremely large optical/infrared telescopes. The Dispersed Fringe Sensor (DFS), or Dispersed Hartmann Sensor (DHS), is a non-contact method using broadband point light sources and it can estimate the piston by the two-directional spectrum formed by the transmissive grating's dispersion and lenslet array. Thus it can implement the combination of co-focusing by Shack-Hartmann technology and phasing by dispersed fringe sensing technologies such as the template-mapping method and the Hartmann method. We introduce the successful design, construction and alignment of our dis- persed Hartmann sensor together with its design principles and simulations. We also conduct many successful real phasing tests and phasing corrections in the visible waveband using our existing indoor segmented mirror optics platform. Finally, some conclusions are reached based on the test and correction of experimental results.展开更多
In this study,we conducted simulations to find the geometric aberrations expected for images taken by the Main Survey Camera of the Chinese Space Station Telescope(CSST)due to its motion.As anticipated by previous wor...In this study,we conducted simulations to find the geometric aberrations expected for images taken by the Main Survey Camera of the Chinese Space Station Telescope(CSST)due to its motion.As anticipated by previous work,our findings indicate that the geometric distortion of light impacts the focal plane's apparent scale,with a more pronounced influence as the size of the focal plane increases.Our models suggest that the effect consistently influences the pixel scale in both the vertical and parallel directions.The apparent scale variation follows a sinusoidal distribution throughout one orbital period.Simulations reveal that the effect is particularly pronounced in the center of the Galaxy and gradually diminishes along the direction of ecliptic latitude.At low ecliptic latitudes,the total aberration leads to about a 0.94 pixel offset(a 20 minute exposure)and a 0.26 pixel offset(a 300 s exposure)at the edge of the field of view.Appropriate processings for the geometric effect during the CSST pre-and post-observation phases are presented.展开更多
We introduce the structure of a radio astronomy phased array feeds(PAF)beamforming demonstrator.In a laboratory environment,we have demonstrated beamforming on a received 1.25 GHz sinusoidal signal and used digital we...We introduce the structure of a radio astronomy phased array feeds(PAF)beamforming demonstrator.In a laboratory environment,we have demonstrated beamforming on a received 1.25 GHz sinusoidal signal and used digital weighting techniques to plot the 2D pattern of the PAF.The radio frequency part of the demonstrator includes a 4×4 linearly polarized microstrip antenna array,all of which is connected in series with a low-noise amplifier.The signals from the central 4×2 array elements are injected into a radio frequency system-on-chip digital board,which can receive eight inputs with a bandwidth of 512 MHz.Combining the principle of undersampling,the beamforming is completed at a frequency of 1.25 GHz for the offline data,and a 2D image of the beam is plotted using beam scanning technology.展开更多
The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a pytho...The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community.展开更多
On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a specia...On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a special issue consisting of 11 invited reviews from more than 30 authors,mainly from China,has been organized.This is the second volume of the special issues entitled Frontiers in Astrophysics published in RAA.The publication aims at evaluating the current status and key progress in some frontier areas of astronomy and astrophysics with a spirit of guiding future studies.展开更多
The National Solar Observatory is currently developing the Accurate Infrared Magnetic Field Measurements of the Sun(AIMS). The primary mirror of the AIMS solar telescope is an off-axis parabolic with a diameter of 1 m...The National Solar Observatory is currently developing the Accurate Infrared Magnetic Field Measurements of the Sun(AIMS). The primary mirror of the AIMS solar telescope is an off-axis parabolic with a diameter of 1 m and with a large off-axis amount of 1 m. Due to the surface figure of the primary mirror under the used state is directly related to image quality of the whole system, a computer-generated hologram(CGH) is carried out to test the primary mirror, and the test results are used to polish the mirror to a higher surface accuracy. However, the fact that the distortion exists in the testing results leads to the failure of a further guide to deterministic optical processing. In this paper, a distortion correction method is proposed, which uses an orthogonal set of vector polynomials to mapping the coordinates of the mirror and the pixels of fringes, and then an interpolation method is adopted to obtain the corrected results. The testing accuracy by using CGH is also verified by an auto-collimate test experiment. According to the distorted corrected results, the root-mean-square of the surface figure is about 1/50λ(λ=632.8 nm) after polishing.展开更多
文摘The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.
基金funded by the National Key Research and Development Program of China under Nos.2023YFA1608200&2020YFC2201703the National Natural Science Foundation of China(NSFC,Grant No.12020101002)the Natural Science Foundation of China for the youth under No.12103093。
文摘The proposed design of a microwave superconducting kinetic inductance detector(MKID)array readout system characterizes the performance of MKIDs through a digital homodyne frequency mixing architecture.Meanwhile,the readout system is implemented using a frequency division multiplexing circuit system,coupled with an FFT design to enable the readout of MKID arrays.The system is characterized by its compact size,low cost,portability,and ease of further development.Together,these features have significant implications for the design and readout of terahertz MKID arrays,while simultaneously advancing both the theoretical and practical aspects of MKID technology.
基金Supported by National Key R&D Program of China(grant No.2023YFA1608304)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)National Natural Science Foundation of China(NSFC,grant No.11903054)。
文摘The SiTian Project represents a groundbreaking initiative in astronomy,aiming to deploy a global network of telescopes,each with a 1 m aperture,for comprehensive time-domain sky surveys.The network's innovative architecture features multiple observational nodes,each comprising three strategically aligned telescopes equipped with filters.This design enables three-color(g,r,i)channel imaging within each node,facilitating precise and coordinated observations.As a pathfinder to the full-scale project,the Mini-SiTian Project serves as the scientific and technological validation platform,utilizing three 30 cm aperture telescopes to validate the methodologies and technologies planned for the broader SiTian network.This paper focuses on the development and implementation of the Master Control System(MCS),and the central command hub for the Mini-SiTian Array.The MCS is designed to facilitate seamless communication with the SiTian Brain,the project's central processing and decisionmaking unit,while ensuring accurate task allocation,real-time status monitoring,and optimized observational workflows.The system adopts a robust architecture that separates front-end and back-end functionalities.A key innovation of the MCS is its ability to dynamically adjust observation plans in response to transient source alerts,enabling rapid and coordinated scans of target sky regions.The paper provides an in-depth analysis of the system's internal components,including the communication system,which is critical for seamless network operation.Extensive testing has validated the functionality,reliability,and compatibility of these components within the overall system architecture.The successful deployment of the MCS in managing the Mini-SiTian Array has demonstrated its practicality and efficacy in collaborative observation and distributed control.By simplifying cluster management and ensuring data integrity,the MCS represents a significant advancement in astronomical observation control systems.Its scalable and adaptable design not only supports the future expansion of the SiTian network but also provides a blueprint for other large-scale telescope arrays,marking a transformative step forward in time-domain astronomy.
文摘We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.
基金supported by the Investigation of Technological Infrastructure Resources(No.2023FY101101)the National Natural Science Foundation of China(NSFC)(No.11073027 and No.12373104)。
文摘Astronomical site selection work is very hard.Unmanned technologies are important trends and solutions.We present a relatively easy method to plan a high reliability site selection which can extend the time from site deployment to returning for maintaining by unmanned confirming the site.First,we redefine the reliability of a site selection deployment with the parameter of the trusty time,which means when we must return,and which can be relatively easy for estimating.The redefinition makes the reliability parameter as a Bayesian probability,and can be obtained by estimating besides testing,which makes the evaluation of each device's reliability much easier.Then we use block diagram tools in the Matlab Simulink software to construct structure diagram,and to link each component with relations of parallel,serial,protection,and so on.This makes the whole reliability value can be calculated at the time when we design or plan a site selection.We applied this concept and method in an actual site selection in Lenghu,Qinghai Province,China.The survey practice reveals its effectiveness and simpleness.
基金supported by the National Natural Science Foundation of China(Grant No.11673039)the Open Project Program of the Key Laboratory of FAST,National Astronomical Observatories,Chinese Academy of Sciences
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST)will be fully commissioned later in 2019.Once commissioned,operation and maintenance of FAST will be the most prominent task.The unique working mode of active shape-changing of FAST cable-net structure makes the traditional maintenance way,which combines routine inspection with preventive maintenances not only expensive,but also unable to effectively avoid potential risks in operations.Therefore,it is necessary to develop an economical and reliable operation/maintenance technology for FAST cable-net structure.In this paper,a Prognostics and Health Management(PHM)system is proposed based on the advanced Digital Twin(DT)technology.Through the finite element analysis of DT model,the current safety status of FAST cablenet is evaluated,and the fatigue life of components in the cable-net is predicted.Hence Condition-Based Maintenance(CBM)of FAST cable-net structure can be realized.The PHM system described in this paper can effectively guarantee the healthy and safe operation of the FAST cable-net structure,greatly improve the maintenance efficiency and reduce the cost for maintenance works.
基金supported by the National Natural Science Foundation of China(Grant Nos.11303059 and 11673039)the Chinese Academy of Sciences Youth Innovation Promotion Association+1 种基金CAS Key Technology Talent Programthe FAST FELLOWSHIP.The FAST FELLOWSHIP is supported by Special Funding for Advanced Users,budgeted and administrated by the Center for Astronomical MegaScience,Chinese Academy of Sciences(CAMS)
文摘The reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is designed to incorporate 4450 rigid panels supported by a flexible cable-net structure. The shapechanging operation that occurs in the process of observation will lead to a relative displacement between adjacent nodes in the cable-net. In addition, three nodes on a rigid panel are fixed with respect to each other. Thus, adaptive connecting mechanisms between panels and the cable-net are certainly needed. The present work focuses on the following aspects. Firstly, the degrees of freedom of adaptive connecting mechanisms were designed so that we can not only adapt the panel to the deformation of the cable- net, but also restrict the panel to its right place. Secondly, finite element and theoretical analyses were applied to calculate the scope of motion in adaptive connecting mechanisms during the cable-net's shape-changing operation, thus providing input parameters for the design size of the adaptive connecting mechanisms. In addition, the gap size between the panels is also investigated to solve the trade-off between avoiding panel collisions and increasing the observation efficiency of FAST.
基金funded by the Astronomical Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant Nos. U1831114, 11941002, and12073048)。
文摘Most reflector surface holographic measurements of a large radio telescope utilize a geostationary satellite as the signal source. The shortcoming is that those measurements could only be done at a limited elevation angle due to the satellite’s relatively stationary state. This paper proposed a new wideband microwave holographic measurement method based on radio sources to achieve full-elevation-angle measurement with small size reference antenna. In theoretical derivation, the time delay and phase change due to path length and device difference between the antenna under test and reference antenna are compensated first. Then the correct method of wideband holography effect, which is because of antenna pattern differing under different wavelengths when receiving a wideband signal, is presented. To verify the proposed methodology, a wideband microwave holographic measurement system is established, the data processing procedure is illustrated, and the reflector surface measurement experiments on a 40 m radio telescope at different elevation angles are conducted. The result shows that the primary reflector surface root-mean-square at around elevation angles of 28°, 44°, 49°, and 75° are respectively 0.213 mm, 0.170 mm, 0.188 mm, and 0.199 mm. It is basically consistent with the real data, indicating that the proposed wideband microwave holography methodology is feasible.
基金funded by the Astronomical Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences(U1831114)。
文摘The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observations in the future.The main specifications and measurement results of some properties in the X-band are introduced in this paper,such as pointing calibration,gain and efficiency,system noise temperature,system equivalent flux density,and variations with elevation.The 23 parameters pointing calibration model considering the atmospheric refraction correction in real time is presented in the telescope,and the pointing accuracy reaches 570 in azimuth direction and 607 in elevation direction for different weather conditions.More than 62%efficiencies are achieved at full elevation range,and more than 70%in the mid-elevation.The system equivalent flux density of the X-band in the mid-elevation reaches 26 Jy.
基金funded by the National Natural Science Foundation of China (NSFC) under Nos. 12003016, 12204353and 62105244。
文摘The transition region is the key region between the lower solar atmosphere and the corona, which has been limitedly understood by human beings. Therefore, the Solar Upper Transition Region Imager(SUTRI) was proposed by Chinese scientists and launched in 2022 July. Right now, the first imaging observation of the upper transition region around 46.5 nm has been carried out by SUTRI. To ensure the spectral and temporal resolution of the SUTRI telescope, we have developed a narrowband Sc/Si multilayer. Based on the extreme ultraviolet(EUV)reflectivity measurements, the multilayer structure has been modified for ensuring the peak position of reflectivity was at 46.5 nm. Finally, the narrowband Sc/Si multilayer was successfully deposited on the hyperboloid primary mirror and secondary mirrors. The deviation of multilayer thickness uniformity was below than 1%, and the average EUV reflectivity at 46.1 nm was 27.8% with a near-normal incident angle of 5°. The calculated bandwidth of the reflectivity curve after primary and secondary mirrors was 2.82 nm, which could ensure the requirements of spectral resolution and reflectivity of SUTRI telescope to achieve its scientific goals.
基金sponsored (in part) by the Chinese Academy of Sciences (CAS) through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile。
文摘Estimating and identifying friction are important aspects of simulating a mechanical drive system. Accurate friction modeling helps to improve a telescope's performance. However, the friction conditions inside are complex and hard to measure. We did simulations with mathematical transfer functions for the Leighton 10 m Telescope and employed a polyline model to identify sources of friction. We made a two-stage model for the Leighton 10 m Telescope. Based on measurements of the motor's currents and speeds, we constructed a curve containing the friction information of the transmission elements. We simulated the system using a step function input under many combinations of friction parameters. By comparing simulation results with the measured ones, we determined the various friction components. This model accurately reproduced the telescope performance including the nonlinearities.
基金funded by the National Key R&D Program of China (2022YFF0709101)the National Natural Science Foundation of China (NSFC) under Nos. 62105244 and 61621001。
文摘This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring.The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process,the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME(first solve the machined surface profile, then solve the system errors) and EM(first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to0.160 nm rms.
基金supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.11503045 and 11373003)+1 种基金National Program on Key Research and Development Project(2016YFA0400804)National Key Basic Research Program of China(2015CB857002)
文摘The Beijing Faint Object Spectrograph and Camera (BFOSC) is one of the most important instruments operating in conjunction with the 2.16-m telescope at Xinglong Observatory. Every year there are - 20 SCI-papers published based on observational data acquired with this telescope. In this work, we have systemically measured the total efficiency of the BFOSC that operates as part of the 2.16-m reflector, based on observations of two ESO flux standard stars. We have obtained the total efficiencies of the BFOSC instrument of different grisms with various slit widths in almost all ranges, and analyzed factors which effect the efficiency of this telescope and spectrograph. For astronomical observers, the result will be useful for them to select a suitable slit width, depending on their scientific goals and weather conditions during observations. For technicians, the result will help them to systemically identify the real efficiency of the telescope and spectrograph, and to further improve the total efficiency and observing capacity of the telescope technically.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10703008 and 11073035)also partly supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-T17)
文摘A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror, and so the larger version is always pursued by astronomers and astronomical technicians. Instead of using a monolithic primary mirror, more and more large telescopes, which are currently being planned or in construction, have adopted a segmented primary mirror design. Therefore, how to sense and phase such a primary mirror is a key issue for the future of extremely large optical/infrared telescopes. The Dispersed Fringe Sensor (DFS), or Dispersed Hartmann Sensor (DHS), is a non-contact method using broadband point light sources and it can estimate the piston by the two-directional spectrum formed by the transmissive grating's dispersion and lenslet array. Thus it can implement the combination of co-focusing by Shack-Hartmann technology and phasing by dispersed fringe sensing technologies such as the template-mapping method and the Hartmann method. We introduce the successful design, construction and alignment of our dis- persed Hartmann sensor together with its design principles and simulations. We also conduct many successful real phasing tests and phasing corrections in the visible waveband using our existing indoor segmented mirror optics platform. Finally, some conclusions are reached based on the test and correction of experimental results.
基金generously supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12073047 and 12273077)the National Key Research and Development(Grant No.2022YFF0711500)。
文摘In this study,we conducted simulations to find the geometric aberrations expected for images taken by the Main Survey Camera of the Chinese Space Station Telescope(CSST)due to its motion.As anticipated by previous work,our findings indicate that the geometric distortion of light impacts the focal plane's apparent scale,with a more pronounced influence as the size of the focal plane increases.Our models suggest that the effect consistently influences the pixel scale in both the vertical and parallel directions.The apparent scale variation follows a sinusoidal distribution throughout one orbital period.Simulations reveal that the effect is particularly pronounced in the center of the Galaxy and gradually diminishes along the direction of ecliptic latitude.At low ecliptic latitudes,the total aberration leads to about a 0.94 pixel offset(a 20 minute exposure)and a 0.26 pixel offset(a 300 s exposure)at the edge of the field of view.Appropriate processings for the geometric effect during the CSST pre-and post-observation phases are presented.
基金funded by the National Key R&D Program of China under No.2022YFC2205300the National Natural Science Foundation of China(NSFC,grant Nos.12073067 and 11973078)the Chinese Academy of Sciences(CAS)“Light of West China”Program under No.2022-XBQNXZ012 and No.2020-XBQNXZ-018。
文摘We introduce the structure of a radio astronomy phased array feeds(PAF)beamforming demonstrator.In a laboratory environment,we have demonstrated beamforming on a received 1.25 GHz sinusoidal signal and used digital weighting techniques to plot the 2D pattern of the PAF.The radio frequency part of the demonstrator includes a 4×4 linearly polarized microstrip antenna array,all of which is connected in series with a low-noise amplifier.The signals from the central 4×2 array elements are injected into a radio frequency system-on-chip digital board,which can receive eight inputs with a bandwidth of 512 MHz.Combining the principle of undersampling,the beamforming is completed at a frequency of 1.25 GHz for the offline data,and a 2D image of the beam is plotted using beam scanning technology.
基金supported by the National Natural Science Foundation of China(NSFC,12173012 and 12473050)the Guangdong Natural Science Funds for Distinguished Young Scholars(2023B1515020049)+2 种基金the Shenzhen Science and Technology Project(JCYJ20240813104805008)the Shenzhen Key Laboratory Launching Project(No.ZDSYS20210702140800001)the Specialized Research Fund for State Key Laboratory of Solar Activity and Space Weather。
文摘The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community.
文摘On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a special issue consisting of 11 invited reviews from more than 30 authors,mainly from China,has been organized.This is the second volume of the special issues entitled Frontiers in Astrophysics published in RAA.The publication aims at evaluating the current status and key progress in some frontier areas of astronomy and astrophysics with a spirit of guiding future studies.
基金funded by the West Light Foundation of the Chinese Academy of Sciences(Grant No.XAB2017B13)the National Natural Science Foundation of China(Grant No.11703072)。
文摘The National Solar Observatory is currently developing the Accurate Infrared Magnetic Field Measurements of the Sun(AIMS). The primary mirror of the AIMS solar telescope is an off-axis parabolic with a diameter of 1 m and with a large off-axis amount of 1 m. Due to the surface figure of the primary mirror under the used state is directly related to image quality of the whole system, a computer-generated hologram(CGH) is carried out to test the primary mirror, and the test results are used to polish the mirror to a higher surface accuracy. However, the fact that the distortion exists in the testing results leads to the failure of a further guide to deterministic optical processing. In this paper, a distortion correction method is proposed, which uses an orthogonal set of vector polynomials to mapping the coordinates of the mirror and the pixels of fringes, and then an interpolation method is adopted to obtain the corrected results. The testing accuracy by using CGH is also verified by an auto-collimate test experiment. According to the distorted corrected results, the root-mean-square of the surface figure is about 1/50λ(λ=632.8 nm) after polishing.