The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. ...The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. We review recent developments in this field and present a systematic framework for the design of separation flow sheets. This framework proposes a three-step approach. In the first step different flow sheets are generated. In the second step these alternative flow sheet structures are evaluated with shortcut methods. In the third step a rigorous mixed-integer nonlinear programming (MINLP) optimization of the entire flow sheet is executed to determine the best alternative. Since a number of alternative flow sheets have already been eliminated, only a few optimization runs are necessary in this final step. The whole framework thus allows the systematic generation and evaluation of separation processes and is illustrated with the case study of the separation of ethanol and water.展开更多
The accessory gearbox is a crucial component of the power transmission system of an aero-engine.The current design of the accessory gearbox case heavily relies on engineering experience,resulting in a bulky and heavy ...The accessory gearbox is a crucial component of the power transmission system of an aero-engine.The current design of the accessory gearbox case heavily relies on engineering experience,resulting in a bulky and heavy structure.This makes it increasingly challenging to meet the design requirements of high-power density.This work proposes a multi-objective topology optimization method based on the compromise programming method for the aero-engine accessory gearbox case.By locally thinning the gearbox case wall thickness,the case weight is reduced by 12.7%,and the maximum Mises stress is also reduced by 19.7%compared to the initial design scheme.Furthermore,the maximum vibration acceleration amplitude is reduced by 23.9%.These results provide a new solution for the lightweight design of the aero-engine accessory gearbox case.展开更多
The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes libra...The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes library of finite element analysis program and Windows-type Graphical User Interfaces by VC + + and its MFC are developed. The reliability, reusability and extensibility of program are enhanced. It is a reference to develop the large-scale, versatile and powerful systems of object-oriented finite element software.展开更多
In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an i...In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an infinite number of results that can be observed by the principal.This principal-agent problem has an infinite number of incentive-compatibility constraints,and we transform it into an optimization problem with an infinite number of constraints called a semi-infinite programming problem.We then propose an exterior penalty function method to find the optimal solution to this semi-infinite programming and illustrate the convergence of this algorithm.By analyzing the optimal solution obtained by the proposed penalty function method,we can obtain the optimal incentive mechanism for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard.展开更多
Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug ...Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug design framework, Drug CAMD, that integrates a deep learning model with a mixed-integer nonlinear programming model is used for designing drug candidates. Within this framework, a virtual chemical library is specifically tailored to inhibit Factor Xa. To further filter and narrow down the lead compounds from the designed compounds, comprehensive approaches involving molecular docking,binding pose metadynamics(BPMD), binding free energy calculations, and enzyme activity inhibition analysis are utilized. To maximize efficiency in terms of time and resources, molecules for in vitro activity testing are initially selected from commercially available portions of customized virtual chemical libraries. In vitro studies assessing inhibitor activities have confirmed that the compound EN300-331859shows potential Factor Xa inhibition, with an IC_(50)value of 34.57 μmol·L^(-1). Through in silico molecular docking and BPMD, the most plausible binding pose for the EN300-331859-Factor Xa complex are identified. The estimated binding free energy values correlate well with the results obtained from biological assays. Consequently, EN300-331859 is identified as a novel and effective sub-micromolar inhibitor of Factor Xa.展开更多
基金the Deutsche Forschungsgemeinschaft (German Research Foundation),DAAD (German Academic Exchange Service) and FUNDAYACUCHO, and Bayer Technology Services
文摘The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. We review recent developments in this field and present a systematic framework for the design of separation flow sheets. This framework proposes a three-step approach. In the first step different flow sheets are generated. In the second step these alternative flow sheet structures are evaluated with shortcut methods. In the third step a rigorous mixed-integer nonlinear programming (MINLP) optimization of the entire flow sheet is executed to determine the best alternative. Since a number of alternative flow sheets have already been eliminated, only a few optimization runs are necessary in this final step. The whole framework thus allows the systematic generation and evaluation of separation processes and is illustrated with the case study of the separation of ethanol and water.
基金supported by the Chongqing Outstanding Young Scientist Fund(Grant No.CSTB2023NSCQJQX0016)the National Natural Science Foundation of China(Grant No.52322504)。
文摘The accessory gearbox is a crucial component of the power transmission system of an aero-engine.The current design of the accessory gearbox case heavily relies on engineering experience,resulting in a bulky and heavy structure.This makes it increasingly challenging to meet the design requirements of high-power density.This work proposes a multi-objective topology optimization method based on the compromise programming method for the aero-engine accessory gearbox case.By locally thinning the gearbox case wall thickness,the case weight is reduced by 12.7%,and the maximum Mises stress is also reduced by 19.7%compared to the initial design scheme.Furthermore,the maximum vibration acceleration amplitude is reduced by 23.9%.These results provide a new solution for the lightweight design of the aero-engine accessory gearbox case.
文摘The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes library of finite element analysis program and Windows-type Graphical User Interfaces by VC + + and its MFC are developed. The reliability, reusability and extensibility of program are enhanced. It is a reference to develop the large-scale, versatile and powerful systems of object-oriented finite element software.
基金supported by National Natural Science Foundation of China(72031009 and 71871171)the National Social Science Foundation of China(20&ZD058).
文摘In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an infinite number of results that can be observed by the principal.This principal-agent problem has an infinite number of incentive-compatibility constraints,and we transform it into an optimization problem with an infinite number of constraints called a semi-infinite programming problem.We then propose an exterior penalty function method to find the optimal solution to this semi-infinite programming and illustrate the convergence of this algorithm.By analyzing the optimal solution obtained by the proposed penalty function method,we can obtain the optimal incentive mechanism for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard.
基金financial supports of the National Natural Science Foundation of China (22078041, 22278053,22208042)Dalian High-level Talents Innovation Support Program (2023RQ059)“the Fundamental Research Funds for the Central Universities (DUT20JC41, DUT22YG218)”。
文摘Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug design framework, Drug CAMD, that integrates a deep learning model with a mixed-integer nonlinear programming model is used for designing drug candidates. Within this framework, a virtual chemical library is specifically tailored to inhibit Factor Xa. To further filter and narrow down the lead compounds from the designed compounds, comprehensive approaches involving molecular docking,binding pose metadynamics(BPMD), binding free energy calculations, and enzyme activity inhibition analysis are utilized. To maximize efficiency in terms of time and resources, molecules for in vitro activity testing are initially selected from commercially available portions of customized virtual chemical libraries. In vitro studies assessing inhibitor activities have confirmed that the compound EN300-331859shows potential Factor Xa inhibition, with an IC_(50)value of 34.57 μmol·L^(-1). Through in silico molecular docking and BPMD, the most plausible binding pose for the EN300-331859-Factor Xa complex are identified. The estimated binding free energy values correlate well with the results obtained from biological assays. Consequently, EN300-331859 is identified as a novel and effective sub-micromolar inhibitor of Factor Xa.