期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coordination Effect-Promoted Durable Ni(OH)_(2) for Energy-Saving Hydrogen Evolution from Water/ Methanol Co-Electrocatalysis 被引量:3
1
作者 Guodong Fu Xiaomin Kang +6 位作者 Yan Zhang Xiaoqiang Yang Lei Wang Xian-Zhu Fu Jiujun Zhang Jing-Li Luo Jianwen Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期176-194,共19页
Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working poten... Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production. 展开更多
关键词 Coordination effect methanol selective oxidation NiMoO4 FORMATE Energy-saving hydrogen production
在线阅读 下载PDF
Selective oxidation of methanol to dimethoxymethane over V_2O_5/Ti O_2–Al_2O_3 catalysts 被引量:3
2
作者 王拓 孟亚利 +1 位作者 曾亮 巩金龙 《Science Bulletin》 SCIE EI CAS CSCD 2015年第11期1009-1018,I0007,共11页
This paper describes the effect of the prepara- tion method of binary oxide supports (TiO2-Al2O3) on catalytic performance of V2O5/TiO2-Al2O3 catalysts for methanol selective oxidation to dimethoxymethane (DMM). T... This paper describes the effect of the prepara- tion method of binary oxide supports (TiO2-Al2O3) on catalytic performance of V2O5/TiO2-Al2O3 catalysts for methanol selective oxidation to dimethoxymethane (DMM). The TiO2-A1203 supports are synthesized by a number of methods including mechanical mixing, ball milling, precipitation, co-precipitation, and sol-gel method, which is followed by incipient wetness impregnation to produce V2O5/TiO2-Al2O3 catalysts. Among these samples, the V2O5/TiO2-Al2O3 catalyst prepared by the sol-gel method has the best catalytic performance with a maximum methanol conversion of 48.9 % and a high DMM selectivity of 89.9 % at 393 K, showing superior performance than V2O5/TiO2 and V2O5/Al2O3. The excellent catalytic performance of V2O5/TiO2-Al2O3 is attributed to the effective interaction between the active component and the mixed support. Such interaction changes the chemical states of supported active V components, produces an increased amount of V^4+ species, and facilitates the electron transfer between support and active component. Additionally, the incorporation of titanium cation into the alumina structure could also help produce an appropriate amount of acidic sites, which increases the DMM selectivity. The coordinated environment of the dispersed vanadia on TiO2-Al2O3 mixed support improves the catalytic efficiency on methanol oxidation to DMM. 展开更多
关键词 methanol selective oxidation DIMETHOXYMETHANE V2O5/TiO2-Al2O3 Binary oxide support
原文传递
CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption 被引量:6
3
作者 Mei Li Xiaohui Deng +6 位作者 Yue Liang Kun Xiang Dan Wu Bin Zhao Haipeng Yang Jing-Li Luo Xian-Zhu Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期314-323,共10页
The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing r... The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing robust bifunctional electrocatalysts are of great significance. Herein, a hierarchical heteronanostructure with Ni–Co layered double hydroxide(LDH) ultrathin nanosheets coated on cobalt phosphide nanosheets arrays(CoxP@NiCo-LDH) are fabricated and used for co-electrolysis of methanol/water to co-produce value-added formate and hydrogen with saving energy. Benefiting from the fast charge transfer introduced by phosphide nanoarrays, the synergy in nanosheets catalysts with hetero-interface,CoxP@NiCo-LDH/Ni foam(NF) exhibits superior electrocatalytic performance(10 mA cm-2@ 1.24 V and-0.10 V for methanol selective oxidation and hydrogen evolution reaction, respectively). Furthermore,CoxP@NiCo-LDH/NF-based symmetric two-electrode electrolyzer drives a current density of 10 m A cm-2 with a low cell voltage of only 1.43 V and the Faradaic efficiency towards the generation of formate and H2 are close to 100% in the tested range of current density(from 40 to 200 m A cm-2). This work highlights the positive effect of hetero-interaction in the design of more efficient eletrocatalysts and might guide the way towards facile upgrading of alcohols and energy-saving electrolytic H2 co-generation. 展开更多
关键词 Cobalt phosphide Bifunctional electrocatalysts selective methanol oxidation H2 evolution reaction Co-electrolysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部