Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter...Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.展开更多
Photocatalysts with desirable selectivity to transformation and purification of targeted pollutants are of great importance in water purification. Here, we demonstrate that selective photocatalysis can be realized by ...Photocatalysts with desirable selectivity to transformation and purification of targeted pollutants are of great importance in water purification. Here, we demonstrate that selective photocatalysis can be realized by the assistance of gold-enhanced selective adsorption onto carbon-coated Au/TiO2 mesoporous microspheres (Au/TiO2@C-MM), which were prepared via a surfactant-assisted two-step method that involved the assembly of oleic acid-stabilized titania and gold nanoparticles into colloidal spheres in an emulsion using sodium dodecyl sulfate as a surfactant and the conversion of the surfactants into carbon under annealing in Ar. Due to the negatively charged amorphous carbon, the mesoporous structure, and the surface plasmon resonance absorption of the Au components, the Au/TiO2@C-MM shows enhanced charge- and size-selective adsorption prop- erties, which enables the materials to have high selectivity in the photocatalytic process.展开更多
Currently, lithium-ion batteries play a key role in energy storage; however, their applications are limited by their low energy density. Here, we design a facile method to prepare mesoporous ZnMn2O4 microspheres with ...Currently, lithium-ion batteries play a key role in energy storage; however, their applications are limited by their low energy density. Here, we design a facile method to prepare mesoporous ZnMn2O4 microspheres with ultrahigh rate performance and ultralong cycling properties by finely tuning the solution viscosity during synthesis. When the current density is raised to 2 A·g^-1, the discharge capacity is maintained at 879 mA·h·g^-1 after 500 cycles. The electro- chemical properties of mesoporous ZnMn2O4 microspheres are better than that for most reported ZnMn2O4. To understand the electrochemical processes on the mesoporous ZnMn2O4 microspheres, in situ Raman spectroscopy is used to investigate the electrode surface. The results show that mesoporous ZnMn2O4 microspheres have a great potential as an alternative to commercial carbon anode materials.展开更多
Recently,rechargeable zinc-ion batteries have been considered as the future development direction of large-scale energy storage due to their low price,safety,environmental friendliness,and excellent electrochemical pe...Recently,rechargeable zinc-ion batteries have been considered as the future development direction of large-scale energy storage due to their low price,safety,environmental friendliness,and excellent electrochemical performance.However,highcapacity,long-cycle stable cathode materials that can meet the demand are still to be developed.Herein,the hollow mesoporous ZnMn2O4/C microsphere cathode material with carbon nanotubes embedded in the shell was prepared by spray pyrolysis for the first time.Its capacity remained at 209.71 mAh·g−1 after 150 cycles at a rate of 0.5 A·g−1,and still maintained a specific capacity of 100.06 mAh·g−1 at a rate of 1 A·g−1 after 1,000 cycles.The outstanding performance is attributed to the hollow structure that can effectively buffer large volume changes caused by ion intercalation and deintercalation,excellent porosity,cationic defects,and high electrical conductivity of carbon nanotubes and its strong adsorption to ZnMn2O4 nanoparticles.展开更多
Single-crystal-like TiO2 mesoporous microspheres have been reported with high photocatalytic activity under ultraviolet light (UV light) because of their high specific surface areas and single-crystal-like channel w...Single-crystal-like TiO2 mesoporous microspheres have been reported with high photocatalytic activity under ultraviolet light (UV light) because of their high specific surface areas and single-crystal-like channel walls. In this work, plasmonic gold nanoparticles (Au NPs) and fl-NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) were composited with single-crystal-like TiO2 mesoporous microspheres through a series of facile approaches, aiming at broadening response region of solar light from UV to visible and near infrared light and enhancing the photocata- lyric activity further. The structure was rationally designed by modifying the pore size of TiO2 mesoporous micro- spheres so as to anchor plasmonic Au NPs, and covering β-NaYF4: Yb3+, Er3+ with SiO2 in order to embed UCNPs into TiO2 mesoporous microspheres via hydrophilic interaction. This work studied the attribution of Au NPs and UCNPs to photocatalysis and found out that combining Au NPs and certain amount of UCNPs with single-crystal- like TiO2 mesoporous microspheres in a monolithic architecture would bring enhanced broadband photocatalytic activity under simulated solar light. Consequently, the composite photocatalyts containing 150 mg UCNPs showed a significant enhancement in reaction rate, which was 36.02% higher than commercial P25 and 85.09% higher than pure TiO2 mesoporous microspheres under simulated solar light.展开更多
Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was...Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was coated onto the plastic conductive substrate to prepare mesoporous TiO2film for flexible dye-sensitized solar cells(DSSCs)by low-temperature heat treatment.The influence of MTM content on the physicochemical properties of the flexible TiO2film was characterized by scanning electron microscope,transmission electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometer,N2adsorption-desorption isotherms,UV–vis absorption and diffuse reflectance spectra.It is revealed that with increasing the MTM content,the dye-loading capability of TiO2film and light-harvesting efficiency of flexible DSSCs are improved due to MTM having high surface area and acting as a light scattering center,respectively,resulting in the enhancement of photocurrent of flexible DSSCs.However,more and larger cracks having negative effect on the performances of flexible DSSCs are formed simultaneously.Under the optimal condition with MTM content of 20%,a flexible DSSC with overall light-to-electric energy conversion efficiency of 2.74%is achieved under a simulated solar light irradiation of 100 mW cm 2(AM 1.5),with 26%improvement in comparison with DSSCs based on P25 alone.展开更多
基金supported by the Foundation for Top Talents Program of China University of Petroleum
文摘Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.
基金supported by the National Natural Science Foundation of China (21271019 and 21641005)Beijing Engineering Center for Hierarchical Catalysts, the Fundamental Research Funds for the Central Universities (YS1406)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in the University (IRT1205)the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of Chinathe National Program on Key Basic Research Project (2014CB932104)
文摘Photocatalysts with desirable selectivity to transformation and purification of targeted pollutants are of great importance in water purification. Here, we demonstrate that selective photocatalysis can be realized by the assistance of gold-enhanced selective adsorption onto carbon-coated Au/TiO2 mesoporous microspheres (Au/TiO2@C-MM), which were prepared via a surfactant-assisted two-step method that involved the assembly of oleic acid-stabilized titania and gold nanoparticles into colloidal spheres in an emulsion using sodium dodecyl sulfate as a surfactant and the conversion of the surfactants into carbon under annealing in Ar. Due to the negatively charged amorphous carbon, the mesoporous structure, and the surface plasmon resonance absorption of the Au components, the Au/TiO2@C-MM shows enhanced charge- and size-selective adsorption prop- erties, which enables the materials to have high selectivity in the photocatalytic process.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21522508, 51625402, and 21521004), the Fundamental Research Funds for the Central Universities (No. 20720150039), "111" Project (Nos. B16029 and B17027), and the Thousand Youth Talents Plan of China.
文摘Currently, lithium-ion batteries play a key role in energy storage; however, their applications are limited by their low energy density. Here, we design a facile method to prepare mesoporous ZnMn2O4 microspheres with ultrahigh rate performance and ultralong cycling properties by finely tuning the solution viscosity during synthesis. When the current density is raised to 2 A·g^-1, the discharge capacity is maintained at 879 mA·h·g^-1 after 500 cycles. The electro- chemical properties of mesoporous ZnMn2O4 microspheres are better than that for most reported ZnMn2O4. To understand the electrochemical processes on the mesoporous ZnMn2O4 microspheres, in situ Raman spectroscopy is used to investigate the electrode surface. The results show that mesoporous ZnMn2O4 microspheres have a great potential as an alternative to commercial carbon anode materials.
基金This work was supported by the National Natural Science Foundation of China(Nos.21871005 and 22171005)the University Synergy Innovation Program of Anhui Province(Nos.GXXT-2020-005,GXXT-2021-012,and GXXT-2021-013)Open project of Shanghai Institute of Technical Physics(No.IIMOKFJJ-19-09).
文摘Recently,rechargeable zinc-ion batteries have been considered as the future development direction of large-scale energy storage due to their low price,safety,environmental friendliness,and excellent electrochemical performance.However,highcapacity,long-cycle stable cathode materials that can meet the demand are still to be developed.Herein,the hollow mesoporous ZnMn2O4/C microsphere cathode material with carbon nanotubes embedded in the shell was prepared by spray pyrolysis for the first time.Its capacity remained at 209.71 mAh·g−1 after 150 cycles at a rate of 0.5 A·g−1,and still maintained a specific capacity of 100.06 mAh·g−1 at a rate of 1 A·g−1 after 1,000 cycles.The outstanding performance is attributed to the hollow structure that can effectively buffer large volume changes caused by ion intercalation and deintercalation,excellent porosity,cationic defects,and high electrical conductivity of carbon nanotubes and its strong adsorption to ZnMn2O4 nanoparticles.
基金This work is supported by the National Natural Science Foundation of China (Nos. 21236003, 21322607, 21406072, 21471056, 21676093 and 91534202), Shanghai Educational Development Foundation (No. 14CG29), the Basic Research Program of Shanghai (No. 14JCI406402), China Postdoctoral Science Foundation (Nos. 2014M560307, 2014M561497, 2015T80408), and the Fundamental Research Funds for the Central Universities.
文摘Single-crystal-like TiO2 mesoporous microspheres have been reported with high photocatalytic activity under ultraviolet light (UV light) because of their high specific surface areas and single-crystal-like channel walls. In this work, plasmonic gold nanoparticles (Au NPs) and fl-NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) were composited with single-crystal-like TiO2 mesoporous microspheres through a series of facile approaches, aiming at broadening response region of solar light from UV to visible and near infrared light and enhancing the photocata- lyric activity further. The structure was rationally designed by modifying the pore size of TiO2 mesoporous micro- spheres so as to anchor plasmonic Au NPs, and covering β-NaYF4: Yb3+, Er3+ with SiO2 in order to embed UCNPs into TiO2 mesoporous microspheres via hydrophilic interaction. This work studied the attribution of Au NPs and UCNPs to photocatalysis and found out that combining Au NPs and certain amount of UCNPs with single-crystal- like TiO2 mesoporous microspheres in a monolithic architecture would bring enhanced broadband photocatalytic activity under simulated solar light. Consequently, the composite photocatalyts containing 150 mg UCNPs showed a significant enhancement in reaction rate, which was 36.02% higher than commercial P25 and 85.09% higher than pure TiO2 mesoporous microspheres under simulated solar light.
基金supported financially by the National High Technology Research and Development Program of China(2009AA03Z217)the National Natural Science Foundation of China(90922028)+1 种基金the Key Project of Chinese Ministry of Education(211204)the Fund of Fujian Provincial Key Laboratory of Nanomaterials(NM10-5)
文摘Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was coated onto the plastic conductive substrate to prepare mesoporous TiO2film for flexible dye-sensitized solar cells(DSSCs)by low-temperature heat treatment.The influence of MTM content on the physicochemical properties of the flexible TiO2film was characterized by scanning electron microscope,transmission electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometer,N2adsorption-desorption isotherms,UV–vis absorption and diffuse reflectance spectra.It is revealed that with increasing the MTM content,the dye-loading capability of TiO2film and light-harvesting efficiency of flexible DSSCs are improved due to MTM having high surface area and acting as a light scattering center,respectively,resulting in the enhancement of photocurrent of flexible DSSCs.However,more and larger cracks having negative effect on the performances of flexible DSSCs are formed simultaneously.Under the optimal condition with MTM content of 20%,a flexible DSSC with overall light-to-electric energy conversion efficiency of 2.74%is achieved under a simulated solar light irradiation of 100 mW cm 2(AM 1.5),with 26%improvement in comparison with DSSCs based on P25 alone.