Heterojunction engineering is recognized as a promising strategy to modulate the photocatalytic properties of semiconductors.Herein,lead-free Cs_(2)CuBr_(4)perovskite quantum dots(PQDs)were confined in a mesoporous Cu...Heterojunction engineering is recognized as a promising strategy to modulate the photocatalytic properties of semiconductors.Herein,lead-free Cs_(2)CuBr_(4)perovskite quantum dots(PQDs)were confined in a mesoporous CuO framework and a p-n type S-scheme heterojunction of Cs_(2)CuBr_(4)/CuO(CCB/CuO)photocatalyst was fabricated.Experimental characterizations confirmed the effective confinement of the Cs_(2)CuBr_(4)PQDs in the mesoporous CuO framework,which enabled intimate contact in the interface of CCB/CuO heterojunction,thus facilitating the interfacial charge migration and separation between p-type CuO and n-type Cs_(2)CuBr_(4).Owing to the outstanding charge transport property and CO_(2)adsorption capacity,the developed CCB/CuO heterojunction exhibited remarkably enhanced photocatalytic CO_(2)conversion efficiency with an electron consumption rate(R_(electron))of 281.1μmol g^(-1)h^(-1),which was approximately2.8 times higher than that of pristine Cs_(2)CuBr_(4).These findings provide some insights into the rational engineering design of lead-free perovskite-based heterostructures for efficient photocatalytic CO_(2)conversion.展开更多
Mesoporous CeO2 was first synthesized by hydrothermal method,and then used to synthesize different contents of CuO)x/CeO2(x:molar ratio of Cu to Ce) by deposition-precipitation method.These materials were characterize...Mesoporous CeO2 was first synthesized by hydrothermal method,and then used to synthesize different contents of CuO)x/CeO2(x:molar ratio of Cu to Ce) by deposition-precipitation method.These materials were characterized by X-ray diffraction(XRD),N2 adsorption and desorption,H2 temperature programmed reduction(H2-TPR) and O2 temperature programmed desorption(O2-TPD) to study the crystal structure,surface area,and the mechanism of CO oxidation.The results show that,on XRD patterns,no evidence of CuO diffraction peaks is present until Cu loading is increased to 20%.The BET surface area decreases noticeably with the increase of Cu content.Compared with other samples,the better reducibility and activity oxygen species of(CuO)10%/CeO2coincide with its better catalytic activity.展开更多
基金financially supported by Natural Science Foundation of Shanghai(No.22ZR1460700)Shanghai Institute of Technology(No.XTCX2022-28)。
文摘Heterojunction engineering is recognized as a promising strategy to modulate the photocatalytic properties of semiconductors.Herein,lead-free Cs_(2)CuBr_(4)perovskite quantum dots(PQDs)were confined in a mesoporous CuO framework and a p-n type S-scheme heterojunction of Cs_(2)CuBr_(4)/CuO(CCB/CuO)photocatalyst was fabricated.Experimental characterizations confirmed the effective confinement of the Cs_(2)CuBr_(4)PQDs in the mesoporous CuO framework,which enabled intimate contact in the interface of CCB/CuO heterojunction,thus facilitating the interfacial charge migration and separation between p-type CuO and n-type Cs_(2)CuBr_(4).Owing to the outstanding charge transport property and CO_(2)adsorption capacity,the developed CCB/CuO heterojunction exhibited remarkably enhanced photocatalytic CO_(2)conversion efficiency with an electron consumption rate(R_(electron))of 281.1μmol g^(-1)h^(-1),which was approximately2.8 times higher than that of pristine Cs_(2)CuBr_(4).These findings provide some insights into the rational engineering design of lead-free perovskite-based heterostructures for efficient photocatalytic CO_(2)conversion.
基金Project(2011FZ030)supported by the Natural Science Foundation of Yunnan Province,ChinaProjects(2011144,2011221)supported by Analysis and Test Foundation of Kunming University of Science and Technology,China
文摘Mesoporous CeO2 was first synthesized by hydrothermal method,and then used to synthesize different contents of CuO)x/CeO2(x:molar ratio of Cu to Ce) by deposition-precipitation method.These materials were characterized by X-ray diffraction(XRD),N2 adsorption and desorption,H2 temperature programmed reduction(H2-TPR) and O2 temperature programmed desorption(O2-TPD) to study the crystal structure,surface area,and the mechanism of CO oxidation.The results show that,on XRD patterns,no evidence of CuO diffraction peaks is present until Cu loading is increased to 20%.The BET surface area decreases noticeably with the increase of Cu content.Compared with other samples,the better reducibility and activity oxygen species of(CuO)10%/CeO2coincide with its better catalytic activity.