Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis tempera...Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.展开更多
Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Z...Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.展开更多
基金Project Supported by Open Fund of Key Laboratory of Catalysis Materials and Science of Hubei Province (CHCL0501)
文摘Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.
文摘Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.