Numerical modelling of coastal morphology is a complex and sometimes unrewarding exercise and often not yielding tangible results. Typically, the underlying drivers of morphology are not properly accounted for in nume...Numerical modelling of coastal morphology is a complex and sometimes unrewarding exercise and often not yielding tangible results. Typically, the underlying drivers of morphology are not properly accounted for in numerical models. Such inaccuracies combined with a paucity of validation data create a difficulty for coastal planners/engineers who are required to interpret such morphological models to develop coastal management strategies. This study develops an approach to long term morphological modelling of a barrier beach system that includes the findings of over 10 years of coastal monitoring on a dynamic coastal system. The novel approach to predicting the long term evolution of the area combines a mix of short term hydrodynamic monitoring and long term morphological modelling to predict future changes in a breached barrier system. A coupled wave, wind, hydrodynamic and sediment transport numerical model was used to predict the coastal evolution in the dynamic barrier beach system of Inner Dingle Bay, Co. Kerry, Ireland. The modelling approach utilizes the schematisation of inputs to reflect observed trends. The approach is subject to two stages of validation both quantitative and qualitative. The study highlights the importance of considering all the parameters responsible for driving coastal evolution and the necessity to have long term monitoring results for trend based validation.展开更多
Time-averaged suspended sediment concentration profiles across the surf zone were measured in a large-scale three-dimensional movable bed laboratory facility (LSTF:Large-scale Sediment Transport Facility). Sediment su...Time-averaged suspended sediment concentration profiles across the surf zone were measured in a large-scale three-dimensional movable bed laboratory facility (LSTF:Large-scale Sediment Transport Facility). Sediment suspension under two different types of breaking waves, spilling and plunging breakers, was investigated. The magnitudes and shapes of the concentration profiles varied substantially at different locations across the surf zone, reflecting the different intensities of breaking-induced turbulence. Sediment sus- pension at the energetic plunging breaker-line was much more active, resulting in nearly homogeneous concentration profiles throughout most of the water column, as compared to the reminder of the surf zone and at the spilling breaker-line. Four suspended sediment concentration models were examined based on the LSTF data, including the mixing turbulence length approach, segment eddy viscosity model, breaking-induced wave-energy dissipation approach, and a combined breaking and turbulence length model developed by this study. Neglecting the breaking-induced turbulence and subsequent sediment mixing, suspended sediment concentration models failed to predict the across-shore variations of the sediment suspension, especially at the plunging breaker-line. Wave-energy dissipation rate provided an accurate method for estimating the intensity of turbulence generated by wave breaking. By incorporating the breaking-induced turbulence, the combined breaking and turbulence length model reproduced the across-shore variation of sediment suspension in the surf zone. The combined model reproduced the measured time-averaged suspended sediment concentration profiles reasonably well across the surf zone.展开更多
文摘Numerical modelling of coastal morphology is a complex and sometimes unrewarding exercise and often not yielding tangible results. Typically, the underlying drivers of morphology are not properly accounted for in numerical models. Such inaccuracies combined with a paucity of validation data create a difficulty for coastal planners/engineers who are required to interpret such morphological models to develop coastal management strategies. This study develops an approach to long term morphological modelling of a barrier beach system that includes the findings of over 10 years of coastal monitoring on a dynamic coastal system. The novel approach to predicting the long term evolution of the area combines a mix of short term hydrodynamic monitoring and long term morphological modelling to predict future changes in a breached barrier system. A coupled wave, wind, hydrodynamic and sediment transport numerical model was used to predict the coastal evolution in the dynamic barrier beach system of Inner Dingle Bay, Co. Kerry, Ireland. The modelling approach utilizes the schematisation of inputs to reflect observed trends. The approach is subject to two stages of validation both quantitative and qualitative. The study highlights the importance of considering all the parameters responsible for driving coastal evolution and the necessity to have long term monitoring results for trend based validation.
基金funded by the U.S.Army Engineer Research and Development Center and the Louisiana Sea Grant College Program
文摘Time-averaged suspended sediment concentration profiles across the surf zone were measured in a large-scale three-dimensional movable bed laboratory facility (LSTF:Large-scale Sediment Transport Facility). Sediment suspension under two different types of breaking waves, spilling and plunging breakers, was investigated. The magnitudes and shapes of the concentration profiles varied substantially at different locations across the surf zone, reflecting the different intensities of breaking-induced turbulence. Sediment sus- pension at the energetic plunging breaker-line was much more active, resulting in nearly homogeneous concentration profiles throughout most of the water column, as compared to the reminder of the surf zone and at the spilling breaker-line. Four suspended sediment concentration models were examined based on the LSTF data, including the mixing turbulence length approach, segment eddy viscosity model, breaking-induced wave-energy dissipation approach, and a combined breaking and turbulence length model developed by this study. Neglecting the breaking-induced turbulence and subsequent sediment mixing, suspended sediment concentration models failed to predict the across-shore variations of the sediment suspension, especially at the plunging breaker-line. Wave-energy dissipation rate provided an accurate method for estimating the intensity of turbulence generated by wave breaking. By incorporating the breaking-induced turbulence, the combined breaking and turbulence length model reproduced the across-shore variation of sediment suspension in the surf zone. The combined model reproduced the measured time-averaged suspended sediment concentration profiles reasonably well across the surf zone.