In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marqu...In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function.The model is based on the element-free Galerkin method,in which Kelvin viscoelastic model and adjustment function are integrated.Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation,and the enrichment function is applied to deal with the discontinuity in the meshless method.To verify the validity of the model,the Sensable Phantom Omni force tactile interactive device is used to simulate the deformations of stomach and heart.Experimental results show that the proposed model improves the real-time performance and accuracy of soft tissue deformation simulation,which provides a new perspective for the application of the meshless method in virtual surgery.展开更多
In order to solve the problem that the existing meshless models are of high computational complexity and are difficult to express the biomechanical characteristics of real soft tissue, a local high-resolution deformat...In order to solve the problem that the existing meshless models are of high computational complexity and are difficult to express the biomechanical characteristics of real soft tissue, a local high-resolution deformation model of soft tissue based on element-free Galerkin method is proposed. The proposed model applies an element-free Galerkin method to establish the model, and integrates Kelvin viscoelastic model and adjustment function to simulate nonlinear viscoelasticity of soft tissue. Meanwhile, a local high-resolution algorithm is applied to sample and render the deformed region of the model to reduce the computational complexity. To verify the effectiveness of the model,liver and brain tumor deformation simulation experiments are carried out. The experimental results show that compared with the existing meshless models, the proposed model well reflects the biomechanical characteristics of soft tissue, and is of high authenticity, which can provide better visual feedback to users while reducing computational cost.展开更多
基金This work was supported,in part,by the National Nature Science Foundation of China under grant numbers 61502240,61502096,61304205,61773219in part,by the Natural Science Foundation of Jiangsu Province under grant number BK20191401+1 种基金in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundin part,by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund.
文摘In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function.The model is based on the element-free Galerkin method,in which Kelvin viscoelastic model and adjustment function are integrated.Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation,and the enrichment function is applied to deal with the discontinuity in the meshless method.To verify the validity of the model,the Sensable Phantom Omni force tactile interactive device is used to simulate the deformations of stomach and heart.Experimental results show that the proposed model improves the real-time performance and accuracy of soft tissue deformation simulation,which provides a new perspective for the application of the meshless method in virtual surgery.
基金Supported by the National Natural Science Foundation of China(No.61502240,61502096,61304205,61773219)Natural Science Foundation of Jiangsu Province(No.BK20141002,BK20150634)
文摘In order to solve the problem that the existing meshless models are of high computational complexity and are difficult to express the biomechanical characteristics of real soft tissue, a local high-resolution deformation model of soft tissue based on element-free Galerkin method is proposed. The proposed model applies an element-free Galerkin method to establish the model, and integrates Kelvin viscoelastic model and adjustment function to simulate nonlinear viscoelasticity of soft tissue. Meanwhile, a local high-resolution algorithm is applied to sample and render the deformed region of the model to reduce the computational complexity. To verify the effectiveness of the model,liver and brain tumor deformation simulation experiments are carried out. The experimental results show that compared with the existing meshless models, the proposed model well reflects the biomechanical characteristics of soft tissue, and is of high authenticity, which can provide better visual feedback to users while reducing computational cost.