Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH ...Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH solution are studied.The sample,the mixture of synthetic gibbsite and sodium hydroxide solution,was scanned in high-pressure differential scanning calorimetry(DSC) equipment with the heating rate of 10 K·min-1. Integral equation and differential equation of non-isothermal kinetics were solved to fit the data related to DSC curve.According to the calculation results,the most probable mechanism function for pure synthetic gibbsite dissolution in sodium hydroxide solution is presented based on the optimum procedure in the database of the mechanism function.The apparent activation energy obtained is(75±1) kJ·mol-1,the frequency factor is 10 8±1mol·s-1,and the reaction is a second order reaction.展开更多
High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailo...High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailorable electronic structure,and entropy stabilization effect.The precise fabrication of HEMs with functional nanostructures provides a crucial avenue to optimize the adsorption strength and catalytic activity for electrocatalysis.This review comprehensively summarizes the development of HEMs,focusing on the principles and strategies of structural design,and the catalytic mechanism towards hydrogen evolution reaction,oxygen evolution reaction and oxygen reduction reaction for the development of high-performance electrocatalysts.The complexity inherent in the interactions between different elements,the changes in the d-band center and the Gibbs free energies during the catalytic progress,as well as the coordination environment of the active sites associated with the unique crystal structure to improve the catalytic performance are discussed.We also provide a perspective on the challenges and future development direction of HEMs in electrocatalysis.This review will contribute to the design and development of HEMs-based catalysts for the next generation of electrochemical applications.展开更多
Hot air sintering technology is used to improve the quality and production efficiency of sintered ore.However,the current thick layer condition highlights the disadvantage of the low oxygen potential of the hot air si...Hot air sintering technology is used to improve the quality and production efficiency of sintered ore.However,the current thick layer condition highlights the disadvantage of the low oxygen potential of the hot air sintering layer.Therefore,it is considered to use oxygen enrichment sintering to improve the environment of hot air sintering.Traditional sintering,hot air sintering,and oxygen-rich hot air sintering were compared through sintering cup experiments,and the influence of hot air and oxygen-rich hot air on sintering indexes was clarified.Hot air reduced the vertical sintering velocity,while improved the yield and tumbler index.Oxygen-rich hot air sintering contributed to improving the vertical sintering velocity while ensuring the quality of sintered ore,thus comprehensively improving production efficiency.Under the action of hot air,the highest temperature of the sintering layer increased and the high-temperature holding time was prolonged.After oxygen enrichment,the combustion efficiency of fuels in the upper layer of materials was promoted,which optimized heat distribution in the middle and lower layers of materials and increased the content of calcium ferrite in the sintered ore,thus strengthening the sintering process.展开更多
The effect of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite(Cr-V-Ti magnetite) was investigated and the function mechanism was simultaneously ana...The effect of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite(Cr-V-Ti magnetite) was investigated and the function mechanism was simultaneously analyzed.The results show that with increasing sinter basicity from 1.71 to 2.36,the softening interval tends to increase from 149.3 ℃ to 181.7 ℃while the melting interval tends to decrease from 178.0 ℃ to 136.7 ℃.The location of cohesive zone moves downwards firstly and then ascends slightly,but the cohesive zone becomes thinner.The softening-melting characteristic value becomes small,which indicates that the permeability of burden column is improved.The dripping ratio of mixed burden tends to increase firstly and then decrease,which comes to the highest value of 74.50%when the sinter basicity is 2.13.The content and the recovery of V and Cr in dripping iron are all increased.The generation amount of components with high melting point in slag becomes little with the increase of sinter basicity,which could improve the permeability of mixed burden.Taking softening-melting behaviors of mixed burden and recovery of valuable elements into account,the proper sinter basicity is no less than 2.13 for smelting mixed burden made from Cr-V-Ti magnetite in blast furnace.展开更多
With the popularity and widespread applications of electronics,higher demands are being placed on the performance of battery materials.Due to the large difference in electronegativity between fluorine and carbon atoms...With the popularity and widespread applications of electronics,higher demands are being placed on the performance of battery materials.Due to the large difference in electronegativity between fluorine and carbon atoms,doping fluorine atoms in nanocarbon-based materials is considered an effective way to improve the performance of used battery.However,there is still a blank in the systematic review of the mechanism and research progress of fluorine-doped nanostructured carbon materials in various batteries.In this review,the synthetic routes of fluorinated/fluorine-doped nanocarbon-based(CF_x)materials under different fluorine sources and the function mechanism of CF_x in various batteries are reviewed in detail.Subsequently,judging from the dependence between the structure and electrochemical performance of nanocarbon sources,the progress of CF_x based on different dimensions(0D–3D)for primary battery applications is reviewed and the balance between energy density and power density is critically discussed.In addition,the roles of CF_x materials in secondary batteries and their current applications in recent years are summarized in detail to illustrate the effect of introducing F atoms.Finally,we envisage the prospect of CF_x materials and offer some insights and recommendations to facilitate the further exploration of CF_x materials for various high-performance battery applications.展开更多
Camellia sinensis(tea),one of the most popular commercial crops,is commonly applied in all parts of the world.The main active ingredients of tea include polyphenols,alkaloids,polysaccharides,amino acids,aroma and vola...Camellia sinensis(tea),one of the most popular commercial crops,is commonly applied in all parts of the world.The main active ingredients of tea include polyphenols,alkaloids,polysaccharides,amino acids,aroma and volatile constitutes,all of which are potentially responsible for the activities of tea.Stem cells(SCs)are the immature and undifferentiated cells by a varying capacity for proliferation,self-renewal and the capability to differentiate into one or more different derivatives with specialized function or maintain their stem cell phenotype.Herein,a thorough review is conducted of the functional mechanism on SCs by tea bioactive compounds.展开更多
OBJECTIVE:To study the functional mechanism of Pingchuanning Decoction in treatment of airway remodeling in asthmatic rats.METHODS:Eighty healthy Wistar male rats were randomized into eight groups(n=10 rats each):Norm...OBJECTIVE:To study the functional mechanism of Pingchuanning Decoction in treatment of airway remodeling in asthmatic rats.METHODS:Eighty healthy Wistar male rats were randomized into eight groups(n=10 rats each):Normal group,Asthma model group,Dexamethasone group,Guilong Kechuanning group,Xiaoqinglong Decoction group,and Pingchuanning Decoction low-,middle-,and high-dose groups.The rats of all but the Normal group were made into asthma models through intraperitoneal injection and aerosol inhalation of ovalbumin.All treatments were administered at the first stimulation of asthma onset(third week of modeling),and the rats were killed after stimulating asthma attacks for 4 weeks.The general conditions of rats and pathomorphological changes of the lung tissues were observed.The expression of nerve growth factor(NGF) of the lung tissues was measured with immunohistochemical methods,and the content of Clara cell secretory protein(CCSP) mRNA was determined with RT-PCR.RESULTS:Compared with the Normal group,the contents of NGF and CCSP mRNA in the lung tissues of the Model group were significantly changed(P<0.01).Compared with the Model group,the indices of Pingchuanning Decoction and other treatment groups were improved to some extent(P<0.05 or P<0.01).CONCLUSIONS:Pathological changes of airway inflammation and remodeling were present in these rat asthma models.Pingchuanning Decoction had an intervention effect on these experimental models.Its functional mechanism may be related to multiple factors,including alleviation of airway inflammation,relief of bronchial smooth muscle spasm,and inhibition of airway remodeling.展开更多
In the framework of the perturbative Quantum Chromodynamics factorization,the production of a hadron includes contributions from fragmentation as well as combination,with the latter being of higher twist.In particular...In the framework of the perturbative Quantum Chromodynamics factorization,the production of a hadron includes contributions from fragmentation as well as combination,with the latter being of higher twist.In particular,the heavy meson production can be via the combination of a heavy quark with a light one,and the cross section can be factorized to be the convolution of the combination matrix element,the light quark distribution function,and the hard partonic sub-cross section of the heavy quark production.The partonic distribution and the combination matrix element are functions of a scaling variable,respectively,which is the momentum fraction of the corresponding quark with respect to the heavy meson.We studied the D^(*±)production in jet via combination in pp collision at the LHC.The total result is comparable with the experimental data.The combination matrix elements can be further studied in various hadron production processes.展开更多
The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by el...The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method.展开更多
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther...As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.展开更多
The effect of acupuncture and moxibustion in the treatment of chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS) is definite,and progress has been made in the studies of its functional mechanism.This paper disc...The effect of acupuncture and moxibustion in the treatment of chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS) is definite,and progress has been made in the studies of its functional mechanism.This paper discusses the related studies on the mechanism of acupuncture and moxibustion in the treatment of CP/CPPS from five aspects:regulating immunity,anti-oxidative stress,regulating neural functions,improving urodynamics,and regulating blood circulation.It is found that acupuncture and moxibustion can decrease the level of pro-inflammatory factors,increase the level of anti-inflammatory factors,and regulate the level of inflammatory regulatory factors,thus to regulate immunity.Acupuncture and moxibustion can improve the body’s ability of anti-oxidative stress,regulate the balance state of oxidation and anti-oxidation,thus to relieve tissue damage,and regulate neural functions by modulating neurotransmitters and autonomic nerves.Acupuncture and moxibustion can improve urodynamics and relieve abnormal urination symptoms by regulating the contraction of pelvic floor muscles,can also promote blood circulation to treat the pelvic congestion.It is expected that this paper can provide reference for the clinical application and research of acupuncture and moxibustion for CP/CPPS.展开更多
Fast pyrolysis of biomass will produce various furan derivatives, among which 5-hydroxymethyl furfural(5-HMF) and furfural(FF) are usually the two most important compounds derived from holocellulose. In this study...Fast pyrolysis of biomass will produce various furan derivatives, among which 5-hydroxymethyl furfural(5-HMF) and furfural(FF) are usually the two most important compounds derived from holocellulose. In this study, density functional theory(DFT) calculations are utilized to reveal the formation mechanisms and pathways of 5-HMF and FF from two hexose units of holocellulose, i.e., glucose and mannose. In addition, fast pyrolysis experiments of glucose and mannose are conducted to substantiate the computational results, and the orientation of 5-HMF and FF is determined by 13C-labeled glucoses. Experimental results indicate that C1 provides the aldehyde group in both 5-HMF and FF, and FF is mainly derived from C1 to C5 segment. According to the computational results, glucose and mannose have similar reaction pathways to form 5-HMF and FF with d-fructose(DF) and 3-deoxy-glucosone(3-DG) as the key intermediates. 5-HMF and FF are formed via competing pathways. The formation of 5-HMF is more competitive than that of FF, leading to higher yield of 5-HMF than FF from both hexoses. In addition, compared with glucose,mannose can form 5-HMF and FF via extra pathways because of the epimerization at C2 position. Therefore, mannose pyrolysis results in higher yields of 5-HMF and FF than glucose pyrolysis.展开更多
Computational calculation was performed to investigate the mechanism of trifluoromethylation reactions of iodobenzene with well-defined N-heterocyclic carbene (NHC)-supported Cu~ trifiuor- omethyl complexes. Four pr...Computational calculation was performed to investigate the mechanism of trifluoromethylation reactions of iodobenzene with well-defined N-heterocyclic carbene (NHC)-supported Cu~ trifiuor- omethyl complexes. Four proposed reaction pathways, namely cr-bond metathesis (BM), concerted oxidative addition-reductive elimination (OARE), iodine atom transfer (IAT) and single-electron transfer (SET), have been computed by density functional theory (DFT). The result indicated that the concerted OARE mechanism is favored among the four reaction pathways, suggesting the trifluoromethylation may occur via concerted OARE mechanism involving Ar-X oxidative addition to the Cu(1) center as the rate determining step.展开更多
The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X...The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well展开更多
Homogeneous formation of polychlorinated dibenzothiophenes/thianthrenes(PCDT/TAs),sulfurated compounds analogous to polychlorinated dibenzo-p-dioxin/dibenzofurans(PCDD/Fs), has been well-documented to occur via ra...Homogeneous formation of polychlorinated dibenzothiophenes/thianthrenes(PCDT/TAs),sulfurated compounds analogous to polychlorinated dibenzo-p-dioxin/dibenzofurans(PCDD/Fs), has been well-documented to occur via radical–radical coupling reactions from chlorinated thiophenol precursors. However, the current understanding of the formation mechanism of PCDT/TAs is exclusively limited to the inherent point of view that chlorothiophenoxy radicals act as the only required intermediates for PCDT/TAs. This study investigates reaction pathways for the formation of PCDT/TAs involving two new types of radical species, i.e., substituted phenyl radicals and substituted thiophenoxyl diradicals. Taking 2-chlorothiophenol(2-CTP) as a model compound for chlorothiophenols,we found that apart from the mostly discussed chlorothiophenoxy radicals, substituted phenyl radicals and substituted thiophenoxyl diradicals could also be readily formed via the reaction of 2-CTP with H radicals. Furthermore, direct self-and cross-coupling of these radicals can result in the formation of PCDT/TAs, including 1-monochlorothianthrene(1-MCTA), 1,6-dichlorothianthrene(1,6-DCTA), 4,6-dichlorodibenzothiophene(4,6-DCDT)and 1,6-dichlorodibenzothiophene(1,6-DCDT). The pathways proposed in this work are proven to be both thermodynamically and kinetically favorable. Particularly, comparisons were made between the formation mechanisms of sulfurated and oxygenated dioxin systems from an energetic point view, showing that replacing oxygen with sulfur atoms greatly reduces the activation barriers of the rate-controlling steps involved in the PCDT/TA formation processes compared with those involved for PCDD/Fs. The calculated results in this work may improve our understanding of the formation mechanism of PCDT/TAs from chlorothiophenol precursors and should be informative to environmental scientists.展开更多
In this Paper we have proven the general solution to the equations of linear operatorsAu=f as u=Cv+e . where v satisfies the equation Dv=g and D is adiagonal matrix. Basing on the consstructive proof of Hilbert Nulls...In this Paper we have proven the general solution to the equations of linear operatorsAu=f as u=Cv+e . where v satisfies the equation Dv=g and D is adiagonal matrix. Basing on the consstructive proof of Hilbert Nullstellensat=. we haregiven the mechanical method of constucting C. D and e.and some of the mechanicalalgorithm displacement functions in elasticity are given by this method also .展开更多
Using density functional theory, noncovalent interactions and two mechanisms of covalent functionalization of drug carmustine with functionalized carbon nanotube(CNT) have been investigated. Quantum molecular descri...Using density functional theory, noncovalent interactions and two mechanisms of covalent functionalization of drug carmustine with functionalized carbon nanotube(CNT) have been investigated. Quantum molecular descriptors of noncovalent configurations were studied. It was specified that binding of drug carmustine with functionalized CNT is thermodynamically suitable. NTCOOH and NTCOCl can bond to the NH group of carmustine through OH(COOH mechanism) and Cl(COCl mechanism) groups, respectively. The activation energies, activation enthalpies and activation Gibbs free energies of two pathways were calculated and compared with each other. The activation parameters related to COOH mechanism are higher than those related to COCl mechanism, and therefore COCl mechanism is suitable for covalent functionalization. COOH functionalized CNT(NTCOOH) has more binding energy than COCl functionalized CNT(NTCOCl) and can act as a favorable system for carmustine drug delivery within biological and chemical systems(noncovalent). These results could be generalized to other similar drugs.展开更多
As is Wellknown in both elastic mechanics andfluid mechanics, the plane problems are more convenient than space problems. One of the causes is that there has been a complete theory about the complex Junction and the a...As is Wellknown in both elastic mechanics andfluid mechanics, the plane problems are more convenient than space problems. One of the causes is that there has been a complete theory about the complex Junction and the analytic junction, hut in space problems, the case is quite different.We have no effective method to deal with these problems. In this paper, we first introduces general theories of Clifford algebra. Then we emphatically explain Clifford algebra in three dimensions and establish theories of regular Junction in three dimensions analogically to analytic function in plane. Thus we extend some results of plane problem-la three dimensions or high dimensions. Obviously, it is very important for elastic and fluid mechanics. But because Clifford algebra is not a commutative algebra, we can't simply extend the results of two dimensions to high dimensions. The left problems are yet to be found out.展开更多
基金Supported by the Research Fund for the Doctoral Program of Higher Education(20050145029)the Science and Technology Talents Fund for Excellent Youth of Liaoning Province(2005221012)
文摘Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH solution are studied.The sample,the mixture of synthetic gibbsite and sodium hydroxide solution,was scanned in high-pressure differential scanning calorimetry(DSC) equipment with the heating rate of 10 K·min-1. Integral equation and differential equation of non-isothermal kinetics were solved to fit the data related to DSC curve.According to the calculation results,the most probable mechanism function for pure synthetic gibbsite dissolution in sodium hydroxide solution is presented based on the optimum procedure in the database of the mechanism function.The apparent activation energy obtained is(75±1) kJ·mol-1,the frequency factor is 10 8±1mol·s-1,and the reaction is a second order reaction.
基金supported by the Guangdong Basic and Applied Basic Research Fund Project(2022A1515140061,No.11000-2344014)Startup Foundation for Postdoctor by Dongguan University of Technology(No.11000-221110149)the High-level Talents Program(contract number 2023JC10L014)of the Department of Science and Technology of Guangdong Province。
文摘High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailorable electronic structure,and entropy stabilization effect.The precise fabrication of HEMs with functional nanostructures provides a crucial avenue to optimize the adsorption strength and catalytic activity for electrocatalysis.This review comprehensively summarizes the development of HEMs,focusing on the principles and strategies of structural design,and the catalytic mechanism towards hydrogen evolution reaction,oxygen evolution reaction and oxygen reduction reaction for the development of high-performance electrocatalysts.The complexity inherent in the interactions between different elements,the changes in the d-band center and the Gibbs free energies during the catalytic progress,as well as the coordination environment of the active sites associated with the unique crystal structure to improve the catalytic performance are discussed.We also provide a perspective on the challenges and future development direction of HEMs in electrocatalysis.This review will contribute to the design and development of HEMs-based catalysts for the next generation of electrochemical applications.
基金supported by the National Natural Science Foundation of China(Nos.51974371 and 52274344)the Science and Technology Innovation Program of Hunan Province(No.2023RC3042)+1 种基金Provincial Natural Science Foundation of Hunan(Nos.2023JJ20068 and 2022JJ30723)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202118).
文摘Hot air sintering technology is used to improve the quality and production efficiency of sintered ore.However,the current thick layer condition highlights the disadvantage of the low oxygen potential of the hot air sintering layer.Therefore,it is considered to use oxygen enrichment sintering to improve the environment of hot air sintering.Traditional sintering,hot air sintering,and oxygen-rich hot air sintering were compared through sintering cup experiments,and the influence of hot air and oxygen-rich hot air on sintering indexes was clarified.Hot air reduced the vertical sintering velocity,while improved the yield and tumbler index.Oxygen-rich hot air sintering contributed to improving the vertical sintering velocity while ensuring the quality of sintered ore,thus comprehensively improving production efficiency.Under the action of hot air,the highest temperature of the sintering layer increased and the high-temperature holding time was prolonged.After oxygen enrichment,the combustion efficiency of fuels in the upper layer of materials was promoted,which optimized heat distribution in the middle and lower layers of materials and increased the content of calcium ferrite in the sintered ore,thus strengthening the sintering process.
基金Project(51574067)supported by the National Natural Science Fundation of ChinaProjects(2012AA062302,2012AA062304)supported by the National High Technology Research and Development Program of ChinaProject(N110202001)supported by the Fundamental Research Funds for the Central Universities of China
文摘The effect of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite(Cr-V-Ti magnetite) was investigated and the function mechanism was simultaneously analyzed.The results show that with increasing sinter basicity from 1.71 to 2.36,the softening interval tends to increase from 149.3 ℃ to 181.7 ℃while the melting interval tends to decrease from 178.0 ℃ to 136.7 ℃.The location of cohesive zone moves downwards firstly and then ascends slightly,but the cohesive zone becomes thinner.The softening-melting characteristic value becomes small,which indicates that the permeability of burden column is improved.The dripping ratio of mixed burden tends to increase firstly and then decrease,which comes to the highest value of 74.50%when the sinter basicity is 2.13.The content and the recovery of V and Cr in dripping iron are all increased.The generation amount of components with high melting point in slag becomes little with the increase of sinter basicity,which could improve the permeability of mixed burden.Taking softening-melting behaviors of mixed burden and recovery of valuable elements into account,the proper sinter basicity is no less than 2.13 for smelting mixed burden made from Cr-V-Ti magnetite in blast furnace.
基金supported by the National Natural Science Foundation of China(51973157,61904123,52103061,52203066)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ196)+3 种基金the project funded by China Postdoctoral Science Foundation(2021T140419)Tianjin Municipal College Student’Innovation and Entrepreneurship Training Program(202110058052)the National Innovation and Entrepreneurship Training Program for College Students(202110058017)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘With the popularity and widespread applications of electronics,higher demands are being placed on the performance of battery materials.Due to the large difference in electronegativity between fluorine and carbon atoms,doping fluorine atoms in nanocarbon-based materials is considered an effective way to improve the performance of used battery.However,there is still a blank in the systematic review of the mechanism and research progress of fluorine-doped nanostructured carbon materials in various batteries.In this review,the synthetic routes of fluorinated/fluorine-doped nanocarbon-based(CF_x)materials under different fluorine sources and the function mechanism of CF_x in various batteries are reviewed in detail.Subsequently,judging from the dependence between the structure and electrochemical performance of nanocarbon sources,the progress of CF_x based on different dimensions(0D–3D)for primary battery applications is reviewed and the balance between energy density and power density is critically discussed.In addition,the roles of CF_x materials in secondary batteries and their current applications in recent years are summarized in detail to illustrate the effect of introducing F atoms.Finally,we envisage the prospect of CF_x materials and offer some insights and recommendations to facilitate the further exploration of CF_x materials for various high-performance battery applications.
基金supported by National College Students Innovation and Entrepreneurship Training Program(201910069007,201910069102)Tianjin Key R&D Plan-Key Projects Supported by Science and Technology(19YFZCSN00010)。
文摘Camellia sinensis(tea),one of the most popular commercial crops,is commonly applied in all parts of the world.The main active ingredients of tea include polyphenols,alkaloids,polysaccharides,amino acids,aroma and volatile constitutes,all of which are potentially responsible for the activities of tea.Stem cells(SCs)are the immature and undifferentiated cells by a varying capacity for proliferation,self-renewal and the capability to differentiate into one or more different derivatives with specialized function or maintain their stem cell phenotype.Herein,a thorough review is conducted of the functional mechanism on SCs by tea bioactive compounds.
基金Supported by the National Natural Science Fund(No. 81173187)the Natural Science Fund of Anhui Province (No.11040606M217)
文摘OBJECTIVE:To study the functional mechanism of Pingchuanning Decoction in treatment of airway remodeling in asthmatic rats.METHODS:Eighty healthy Wistar male rats were randomized into eight groups(n=10 rats each):Normal group,Asthma model group,Dexamethasone group,Guilong Kechuanning group,Xiaoqinglong Decoction group,and Pingchuanning Decoction low-,middle-,and high-dose groups.The rats of all but the Normal group were made into asthma models through intraperitoneal injection and aerosol inhalation of ovalbumin.All treatments were administered at the first stimulation of asthma onset(third week of modeling),and the rats were killed after stimulating asthma attacks for 4 weeks.The general conditions of rats and pathomorphological changes of the lung tissues were observed.The expression of nerve growth factor(NGF) of the lung tissues was measured with immunohistochemical methods,and the content of Clara cell secretory protein(CCSP) mRNA was determined with RT-PCR.RESULTS:Compared with the Normal group,the contents of NGF and CCSP mRNA in the lung tissues of the Model group were significantly changed(P<0.01).Compared with the Model group,the indices of Pingchuanning Decoction and other treatment groups were improved to some extent(P<0.05 or P<0.01).CONCLUSIONS:Pathological changes of airway inflammation and remodeling were present in these rat asthma models.Pingchuanning Decoction had an intervention effect on these experimental models.Its functional mechanism may be related to multiple factors,including alleviation of airway inflammation,relief of bronchial smooth muscle spasm,and inhibition of airway remodeling.
基金the National Natural Science Foundation of China(NSFC)under Grant Nos.12275157,11775130project ZR2022MA056 supported by Shandong Provincial Natural Science Foundation
文摘In the framework of the perturbative Quantum Chromodynamics factorization,the production of a hadron includes contributions from fragmentation as well as combination,with the latter being of higher twist.In particular,the heavy meson production can be via the combination of a heavy quark with a light one,and the cross section can be factorized to be the convolution of the combination matrix element,the light quark distribution function,and the hard partonic sub-cross section of the heavy quark production.The partonic distribution and the combination matrix element are functions of a scaling variable,respectively,which is the momentum fraction of the corresponding quark with respect to the heavy meson.We studied the D^(*±)production in jet via combination in pp collision at the LHC.The total result is comparable with the experimental data.The combination matrix elements can be further studied in various hadron production processes.
文摘The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE)under Training Industrial Security Specialist for High-Tech Industry(RS-2024-00415520)supervised by the Korea Institute for Advancement of Technology(KIAT)the Ministry of Science and ICT(MSIT)under the ICT Challenge and Advanced Network of HRD(ICAN)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning&Evaluation(IITP).
文摘As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.
基金Supported by Program of Shanghai Pudong New Area Famous Traditional Chinese Medicine。
文摘The effect of acupuncture and moxibustion in the treatment of chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS) is definite,and progress has been made in the studies of its functional mechanism.This paper discusses the related studies on the mechanism of acupuncture and moxibustion in the treatment of CP/CPPS from five aspects:regulating immunity,anti-oxidative stress,regulating neural functions,improving urodynamics,and regulating blood circulation.It is found that acupuncture and moxibustion can decrease the level of pro-inflammatory factors,increase the level of anti-inflammatory factors,and regulate the level of inflammatory regulatory factors,thus to regulate immunity.Acupuncture and moxibustion can improve the body’s ability of anti-oxidative stress,regulate the balance state of oxidation and anti-oxidation,thus to relieve tissue damage,and regulate neural functions by modulating neurotransmitters and autonomic nerves.Acupuncture and moxibustion can improve urodynamics and relieve abnormal urination symptoms by regulating the contraction of pelvic floor muscles,can also promote blood circulation to treat the pelvic congestion.It is expected that this paper can provide reference for the clinical application and research of acupuncture and moxibustion for CP/CPPS.
基金financial support from the National Natural Science Foundation of China (51576064, 51676193)Beijing Nova Program (Z171100001117064)+2 种基金Beijing Natural Science Foundation (3172030)the Foundation of Stake Key Laboratory of Coal Combustion (FSKLCCA1706)the Fundamental Research Funds for the Central Universities (2017MS071, 2016YQ05)
文摘Fast pyrolysis of biomass will produce various furan derivatives, among which 5-hydroxymethyl furfural(5-HMF) and furfural(FF) are usually the two most important compounds derived from holocellulose. In this study, density functional theory(DFT) calculations are utilized to reveal the formation mechanisms and pathways of 5-HMF and FF from two hexose units of holocellulose, i.e., glucose and mannose. In addition, fast pyrolysis experiments of glucose and mannose are conducted to substantiate the computational results, and the orientation of 5-HMF and FF is determined by 13C-labeled glucoses. Experimental results indicate that C1 provides the aldehyde group in both 5-HMF and FF, and FF is mainly derived from C1 to C5 segment. According to the computational results, glucose and mannose have similar reaction pathways to form 5-HMF and FF with d-fructose(DF) and 3-deoxy-glucosone(3-DG) as the key intermediates. 5-HMF and FF are formed via competing pathways. The formation of 5-HMF is more competitive than that of FF, leading to higher yield of 5-HMF than FF from both hexoses. In addition, compared with glucose,mannose can form 5-HMF and FF via extra pathways because of the epimerization at C2 position. Therefore, mannose pyrolysis results in higher yields of 5-HMF and FF than glucose pyrolysis.
基金supported by National Natural Science Foundation of China(Nos.21073144,21173169)Fundamental Research Funds for the Central Universities(No.XDJK2013A008)
文摘Computational calculation was performed to investigate the mechanism of trifluoromethylation reactions of iodobenzene with well-defined N-heterocyclic carbene (NHC)-supported Cu~ trifiuor- omethyl complexes. Four proposed reaction pathways, namely cr-bond metathesis (BM), concerted oxidative addition-reductive elimination (OARE), iodine atom transfer (IAT) and single-electron transfer (SET), have been computed by density functional theory (DFT). The result indicated that the concerted OARE mechanism is favored among the four reaction pathways, suggesting the trifluoromethylation may occur via concerted OARE mechanism involving Ar-X oxidative addition to the Cu(1) center as the rate determining step.
文摘The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well
基金supported by the National Natural Science Foundation (Nos. 21407167, 21621064, and 21607168)the Chinese Academy of Sciences (No. XDB14030500)
文摘Homogeneous formation of polychlorinated dibenzothiophenes/thianthrenes(PCDT/TAs),sulfurated compounds analogous to polychlorinated dibenzo-p-dioxin/dibenzofurans(PCDD/Fs), has been well-documented to occur via radical–radical coupling reactions from chlorinated thiophenol precursors. However, the current understanding of the formation mechanism of PCDT/TAs is exclusively limited to the inherent point of view that chlorothiophenoxy radicals act as the only required intermediates for PCDT/TAs. This study investigates reaction pathways for the formation of PCDT/TAs involving two new types of radical species, i.e., substituted phenyl radicals and substituted thiophenoxyl diradicals. Taking 2-chlorothiophenol(2-CTP) as a model compound for chlorothiophenols,we found that apart from the mostly discussed chlorothiophenoxy radicals, substituted phenyl radicals and substituted thiophenoxyl diradicals could also be readily formed via the reaction of 2-CTP with H radicals. Furthermore, direct self-and cross-coupling of these radicals can result in the formation of PCDT/TAs, including 1-monochlorothianthrene(1-MCTA), 1,6-dichlorothianthrene(1,6-DCTA), 4,6-dichlorodibenzothiophene(4,6-DCDT)and 1,6-dichlorodibenzothiophene(1,6-DCDT). The pathways proposed in this work are proven to be both thermodynamically and kinetically favorable. Particularly, comparisons were made between the formation mechanisms of sulfurated and oxygenated dioxin systems from an energetic point view, showing that replacing oxygen with sulfur atoms greatly reduces the activation barriers of the rate-controlling steps involved in the PCDT/TA formation processes compared with those involved for PCDD/Fs. The calculated results in this work may improve our understanding of the formation mechanism of PCDT/TAs from chlorothiophenol precursors and should be informative to environmental scientists.
文摘In this Paper we have proven the general solution to the equations of linear operatorsAu=f as u=Cv+e . where v satisfies the equation Dv=g and D is adiagonal matrix. Basing on the consstructive proof of Hilbert Nullstellensat=. we haregiven the mechanical method of constucting C. D and e.and some of the mechanicalalgorithm displacement functions in elasticity are given by this method also .
文摘Using density functional theory, noncovalent interactions and two mechanisms of covalent functionalization of drug carmustine with functionalized carbon nanotube(CNT) have been investigated. Quantum molecular descriptors of noncovalent configurations were studied. It was specified that binding of drug carmustine with functionalized CNT is thermodynamically suitable. NTCOOH and NTCOCl can bond to the NH group of carmustine through OH(COOH mechanism) and Cl(COCl mechanism) groups, respectively. The activation energies, activation enthalpies and activation Gibbs free energies of two pathways were calculated and compared with each other. The activation parameters related to COOH mechanism are higher than those related to COCl mechanism, and therefore COCl mechanism is suitable for covalent functionalization. COOH functionalized CNT(NTCOOH) has more binding energy than COCl functionalized CNT(NTCOCl) and can act as a favorable system for carmustine drug delivery within biological and chemical systems(noncovalent). These results could be generalized to other similar drugs.
基金This is a comprehensive report at the Second National Symposium on Modern Mathematics and MechanicsProject Supported by the Science Foundation of the Chinese Academy of Sciences
文摘As is Wellknown in both elastic mechanics andfluid mechanics, the plane problems are more convenient than space problems. One of the causes is that there has been a complete theory about the complex Junction and the analytic junction, hut in space problems, the case is quite different.We have no effective method to deal with these problems. In this paper, we first introduces general theories of Clifford algebra. Then we emphatically explain Clifford algebra in three dimensions and establish theories of regular Junction in three dimensions analogically to analytic function in plane. Thus we extend some results of plane problem-la three dimensions or high dimensions. Obviously, it is very important for elastic and fluid mechanics. But because Clifford algebra is not a commutative algebra, we can't simply extend the results of two dimensions to high dimensions. The left problems are yet to be found out.