期刊文献+
共找到960篇文章
< 1 2 48 >
每页显示 20 50 100
Some Group Runs Based Multivariate Control Charts for Monitoring the Process Mean Vector
1
作者 Mukund Parasharam Gadre Vikas Chintaman Kakade 《Open Journal of Statistics》 2016年第6期1098-1109,共13页
In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, ... In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts. 展开更多
关键词 Some Group Runs Based Multivariate Control Charts for Monitoring the Process mean vector
在线阅读 下载PDF
The Submanifolds with Parallel Mean Curvature Vector in a Locally Symmetric and Conformally Flat Riemannian Manifold 被引量:8
2
作者 孙华飞 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第1期32-36,共5页
In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If the... In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1). 展开更多
关键词 Locally symmetric conformally flat parallel mean curvature vector
在线阅读 下载PDF
High-dimensional Tests for Mean Vector: Approaches without Estimating the Mean Vector Directly 被引量:1
3
作者 Bo CHEN Hai-meng WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第1期78-86,共9页
Several tests for multivariate mean vector have been proposed in the recent literature.Generally,these tests are directly concerned with the mean vector of a high-dimensional distribution.The paper presents two new te... Several tests for multivariate mean vector have been proposed in the recent literature.Generally,these tests are directly concerned with the mean vector of a high-dimensional distribution.The paper presents two new test procedures for testing mean vector in large dimension and small samples.We do not focus on the mean vector directly,which is a different framework from the existing choices.The first test procedure is based on the asymptotic distribution of the test statistic,where the dimension increases with the sample size.The second test procedure is based on the permutation distribution of the test statistic,where the sample size is fixed and the dimension grows to infinity.Simulations are carried out to examine the finite-sample performance of the tests and to compare them with some popular nonparametric tests available in the literature. 展开更多
关键词 asymptotic distribution high-dimensional data permutation test U-STATISTIC testing mean vector
原文传递
Superiority of empirical Bayes estimator of the mean vector in multivariate normal distribution
4
作者 YUAN Min WAN ChongLi WEI LaiSheng 《Science China Mathematics》 SCIE CSCD 2016年第6期1175-1186,共12页
In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased est... In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased estimator(MVUE) and a revised James-Stein estimators(RJSE) are investigated respectively under mean square error(MSE) criterion. Extensive simulations are conducted to show that performance of the PEBE is optimal among these three estimators under the MSE criterion. 展开更多
关键词 multivariate normal distribution mean vector MVUE PEBE RJSE mean square error
原文传递
Sign-based Test for Mean Vector in High-dimensional and Sparse Settings
5
作者 Wei LIU Ying Qiu LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第1期93-108,共16页
In this article, we introduce a robust sparse test statistic which is based on the maximum type statistic. Both the limiting null distribution of the test statistic and the power of the test are analysed. It is shown ... In this article, we introduce a robust sparse test statistic which is based on the maximum type statistic. Both the limiting null distribution of the test statistic and the power of the test are analysed. It is shown that the test is particularly powerful against sparse alternatives. Numerical studies are carried out to examine the numerical performance of the test and to compare it with other tests available in the literature. The numerical results show that the test proposed significantly outperforms those tests in a range of settings, especially for sparse alternatives. 展开更多
关键词 High-dimensional data maximum type test sign-based dense test sign-based sparsity test sum of squares type test testing mean vector
原文传递
ON DETECTION OF CHANGE POINTS USING MEAN VECTORS
6
作者 缪柏其 赵林城 P.R.KRISHNAIAH 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第3期193-203,共11页
In this paper,the authors consider the problem of change points within the framework of model selection and propose a procedure for estimating the locations of change points when the number of change points is known.T... In this paper,the authors consider the problem of change points within the framework of model selection and propose a procedure for estimating the locations of change points when the number of change points is known.The strong consistency of this procedure is also established. The problem of detecting change points is discussed within the framework of the simultaneous test procedure.The case where the number of change points is unknown will be discussed in another paper. 展开更多
关键词 ON DETECTION OF CHANGE POINTS USING mean vectorS
原文传递
Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors 被引量:1
7
作者 Mohamed Elnagi Salah Kamel +1 位作者 Abdelhady Ramadan Mohamed F.Elnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第3期5229-5250,共22页
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ... Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms. 展开更多
关键词 Photovoltaic(PV)modules weIghted mean oF vectors algorithm(INFO) renewable energy static PV models dynamic PV models solar energy
在线阅读 下载PDF
Use of Support Vector Regression Based on Mean Impact Value Model to Identify Active Compounds in a Combination of Curcuma longa L.and Glycyrrhiza extracts 被引量:3
8
作者 Jianlan Jiang Qingjie Tan +2 位作者 Weifeng Li Xinyun Du Ningzhi Liu 《Transactions of Tianjin University》 EI CAS 2017年第3期237-244,共8页
A support vector regression based on the mean impact value (MIV) model was constructed to identify the bioactive compounds inhibiting proliferation of HeLa cells in a combination of turmeric (Curcuma longa L.) and liq... A support vector regression based on the mean impact value (MIV) model was constructed to identify the bioactive compounds inhibiting proliferation of HeLa cells in a combination of turmeric (Curcuma longa L.) and liquorice (Glycyrrhiza) extracts. The quantitative chemical fingerprint from 50 batches of turmeric and liquorice extracts was established using high performance liquid chromatography hyphenated to an ultraviolet visible detector. Qualitative results were obtained using ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. A total of 46 peaks (peaks 1–15 from turmeric and 16–46 from liquorice) were selected as “common peaks” for analysis. The inhibitory effect of the combined extracts on HeLa cells was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. It was found that 15 compounds (peaks: 8, 12, 30, 24, 46, 11, 14, 9, 3, 1, 44, 18, 7, 45 and 43) possessing high absolute MIV exhibited a significant correlation with the cytotoxicity against HeLa cells; most of these have already been confirmed with potential cytotoxicity in previous research. The important potential application of the present model can be extended to help discover active compounds from complex herbal medicine prior to traditional bioassay-guided separation. It is considered that this could be a useful tool for re-developing herbal medicine based on the use of these active compounds. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 BIOASSAY Electrospray ionization Food products High performance liquid chromatography Ionization of liquids Liquid chromatography Mass spectrometry Medicine Plant extracts Regression analysis
在线阅读 下载PDF
FAST IMAGE ENCODING ALGORITHM BASED ON MEAN-MATCH CORRELATION VECTOR QUANTIZATION 被引量:1
9
作者 徐润生 许晓鸣 张卫东 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第1期40-43,共4页
A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high co... A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ. 展开更多
关键词 image coding vector quantization mean match method
在线阅读 下载PDF
基于K-means聚类的LSTM-SVR-DE光伏功率组合预测 被引量:3
10
作者 张元曦 杨国华 +4 位作者 杨娜 李祯 马鑫 刘浩睿 南少帅 《综合智慧能源》 2025年第2期71-78,共8页
为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合... 为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合,并使用差分进化算法(DE)寻找最佳组合权重。最后,对宁夏某光伏电站的真实数据进行仿真和对比研究,结果表明该方法对比LSTM和SVR模型预测误差减小约70%。 展开更多
关键词 K-meanS聚类 LSTM神经网络 支持向量回归 差分进化法 光伏功率预测
在线阅读 下载PDF
Multiple mental tasks classification based on nonlinear parameter of mean period using support vector machines
11
作者 刘海龙 王珏 郑崇勋 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期70-72,共3页
Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from freque... Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM(support vector machines).The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments.And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's.The results indicate that the parameter of mean period represents mental tasks well for classification.Furthermore,the method of mean period is less computationally demanding,which indicates its potential use for online BCI systems. 展开更多
关键词 electroencephalography(EEG) brain-computer interface(BCI) mental tasks classification mean period support vector machine(SVM)
暂未订购
MOTION VECTOR RECOVERY METHOD BASED ON MEAN SHIFT PROCEDURE
12
作者 Zhan Xuefeng Zhu Xiuchang 《Journal of Electronics(China)》 2010年第6期830-837,共8页
This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space... This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space, local MVs in the feature space tend to cluster closely. To estimate the lost MVs in local area, recovery of lost MVs is modeled as clustering operation. MS procedure is applied to enforce each lost MV in the feature space to shift to the position where dominant MVs are gathered. Meanwhile, bandwidth estimation is statistically characterized by the variation of local standard de-viations; weighted value calculation is determined by estimation of overall standard deviation. Simu-lation results demonstrate their better performance when compared with other MV recovery ap-proaches and low computation cost. 展开更多
关键词 Error concealment Motion vector (MV) recovery mean shift K-meanS Bandwidth estimation
在线阅读 下载PDF
一种用于文本聚类的改进k-means算法 被引量:34
13
作者 索红光 王玉伟 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第1期60-64,共5页
k-means是目前常用的文本聚类算法,针对其最终搜索的局部极值与全局最优解偏差较大的缺点,采用一种基于局部搜索优化的思想来改进算法,并推导出目标函数的变化公式。根据目标函数值的改变对聚类结果作再次划分后,继续k-means迭代,拓展... k-means是目前常用的文本聚类算法,针对其最终搜索的局部极值与全局最优解偏差较大的缺点,采用一种基于局部搜索优化的思想来改进算法,并推导出目标函数的变化公式。根据目标函数值的改变对聚类结果作再次划分后,继续k-means迭代,拓展其搜索范围。理论分析和实验结果表明修改后的算法能有效地提高聚类的质量,且计算复杂度仍与数据集文本总数呈线性变化。 展开更多
关键词 文本聚类 K-meanS 向量空间模型 局部迭代
在线阅读 下载PDF
面向CPU/MIC异构架构的K-Means向量化算法 被引量:4
14
作者 谭郁松 伍复慧 +2 位作者 吴庆波 陈微 孙晓利 《计算机科学与探索》 CSCD 2014年第6期641-652,共12页
在大数据背景下,以K-Means为代表的聚类分析对于数据分析和挖掘十分重要。海量高维数据的处理给K-Means算法带来了性能方面的强烈需求。最新提出的众核体系结构MIC(many integrated core)能够为算法加速提供众核间线程级和核内指令级并... 在大数据背景下,以K-Means为代表的聚类分析对于数据分析和挖掘十分重要。海量高维数据的处理给K-Means算法带来了性能方面的强烈需求。最新提出的众核体系结构MIC(many integrated core)能够为算法加速提供众核间线程级和核内指令级并行,使其成为K-Means算法加速的很好选择。在分析K-Means基本算法特点的基础上,分析了K-Means算法的瓶颈,提出了可利用数据并行的K-Means向量化算法,优化了向量化算法的数据布局方案。最后,基于CPU/MIC的异构架构实现了向量化K-Means算法,并且探索了MIC在非传统HPC(high performance computing)应用领域的优化策略。测试结果表明,K-Means向量化算法具有良好的计算性能和扩展性。 展开更多
关键词 向量优化 集成众核(MIC) 异构 MANY integrated CORE (MIC)
在线阅读 下载PDF
一种基于运动矢量分析的Mean shift目标跟踪算法 被引量:19
15
作者 田纲 胡瑞敏 王中元 《中国图象图形学报》 CSCD 北大核心 2010年第1期85-90,共6页
Mean shift算法作为一种非参密度估计算法,目前已被广泛应用于视频运动目标的跟踪。该算法具有运算效率快,对目标变形、旋转不敏感,在部分遮挡的情况下有一定鲁棒性等特点,但该算法在运动目标速度过快的情况下,由于没有考虑利用目标的... Mean shift算法作为一种非参密度估计算法,目前已被广泛应用于视频运动目标的跟踪。该算法具有运算效率快,对目标变形、旋转不敏感,在部分遮挡的情况下有一定鲁棒性等特点,但该算法在运动目标速度过快的情况下,由于没有考虑利用目标的运动方向和速度信息,因此在跟踪快速运动目标时容易造成跟踪丢失。针对此问题,提出了一种基于运动矢量分析与Mean shift跟踪算法相结合的新方法,即首先对视频编码过程中产生的运动矢量进行概率统计分析,以获取目标运动方向与运动速度的估计值,再以此修正Mean shift运动候选区域的中心位置,使每次搜索开始时,候选中心位置更接近实际目标中心位置。通过与传统的Mean shift算法的跟踪实验比较可见,新算法不仅提高了快速运动目标跟踪的精度,而且减少了算法的搜索迭代次数,从而提高了运算效率。该算法可适用于智能视频监控设备中的视频编码与目标跟踪同时计算的情况,实验结果表明,该算法是有效可行的。 展开更多
关键词 mean SHIFT 目标跟踪 运动矢量
在线阅读 下载PDF
一种改进的Mean Shift指纹图像分割算法 被引量:1
16
作者 王科飞 王慧 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期1011-1014,共4页
基于传统指纹图像分割算法,提出一种改进的Mean Shift指纹图像分割算法.该算法利用指纹图像固有的方向性特性,把经过分割后的每个指纹图像区域抽象为一个样本点,将区域内像素点的灰度均值作为均值向量,从而有效地实现了指纹图像分割.实... 基于传统指纹图像分割算法,提出一种改进的Mean Shift指纹图像分割算法.该算法利用指纹图像固有的方向性特性,把经过分割后的每个指纹图像区域抽象为一个样本点,将区域内像素点的灰度均值作为均值向量,从而有效地实现了指纹图像分割.实验结果表明,该算法能准确地将指纹图像中的模糊区域和背景区域分离,提高了指纹图像分割的精确度,并且对于多数指纹图像准确性较好. 展开更多
关键词 指纹图像 图像分割 均值向量
在线阅读 下载PDF
基于K-means和SVM的蓝牙室内定位算法 被引量:18
17
作者 徐超蓝 高军礼 +1 位作者 张小花 宋海涛 《传感器与微系统》 CSCD 2019年第2期133-135,13,共4页
为了克服指纹定位过程中,由于信号不稳定所造成的定位精确不高,指纹漂移等问题,利用卡尔曼滤波对采集的蓝牙接收信号强度(RSS)数据进行预处理,并通过K-means算法对数据进行初始聚类;计算待测数据与各聚类中心的距离,将与待测数据临近的... 为了克服指纹定位过程中,由于信号不稳定所造成的定位精确不高,指纹漂移等问题,利用卡尔曼滤波对采集的蓝牙接收信号强度(RSS)数据进行预处理,并通过K-means算法对数据进行初始聚类;计算待测数据与各聚类中心的距离,将与待测数据临近的类簇数据进行融合。针对融合形成的新数据子集,训练出对应的支持向量机(SVM)模型,并完成待测数据的分类。经过测试,结果表明:算法的定位精度稳定在1. 5m以内,达到预期目标。 展开更多
关键词 室内定位 蓝牙 位置指纹 卡尔曼滤波 K-meanS算法 支持向量机
在线阅读 下载PDF
面向交通流检测的Mean Shift多目标自适应跟踪算法 被引量:2
18
作者 闫德莹 刘贵全 缪泓 《计算机应用与软件》 CSCD 2011年第10期72-76,共5页
随着社会的发展,交通问题越来越严重,交通流检测技术是解决这一问题的重要途径,而目标跟踪又是交通流检测中必不可少的一部分。目前在目标跟踪领域Mean Shift算法是被广泛采用的技术,但是传统的Mean Shift跟踪算法计算量很大,难以实现... 随着社会的发展,交通问题越来越严重,交通流检测技术是解决这一问题的重要途径,而目标跟踪又是交通流检测中必不可少的一部分。目前在目标跟踪领域Mean Shift算法是被广泛采用的技术,但是传统的Mean Shift跟踪算法计算量很大,难以实现交通流检测中的多目标实时追踪。鉴于此,提出一种基于线性预测的Mean Shift跟踪算法。该算法引入一个预测矢量,用来预测目标在下一帧可能出现的位置,在跟踪时算法从预测的位置开始迭代,直至收敛于目标真实位置。实验结果表明,该算法从很大程度上提高了原有算法的效率,有利于实时跟踪。而且,为了解决Mean Shift跟踪算法中核函数带宽自适应的问题,还提出了一种基于比较目标中心灰度比例变化来实现带宽自适应更新的新方法。 展开更多
关键词 交通流 mean SHIFT 直方图 预测矢量 自适应
在线阅读 下载PDF
K-means聚类和支持向量机结合的文本分类研究 被引量:6
19
作者 贾燕花 徐蔚鸿 《计算机工程与应用》 CSCD 北大核心 2010年第22期172-174,共3页
针对数据挖掘中文本自动分类问题,提出了一种基于k-means聚类算法和支持向量机相结合的文本分类方法。该方法先将文本大致聚为k类,然后对每一类用支持向量机进行细分。构造了可用于多个模式类识别的多层SVM模型,该模型可完成对多个模式... 针对数据挖掘中文本自动分类问题,提出了一种基于k-means聚类算法和支持向量机相结合的文本分类方法。该方法先将文本大致聚为k类,然后对每一类用支持向量机进行细分。构造了可用于多个模式类识别的多层SVM模型,该模型可完成对多个模式的分类识别。给出了该模型的构造及应用的方法,并验证了该方法的有效性。 展开更多
关键词 文本分类 K-meanS算法 聚类 支持向量机
在线阅读 下载PDF
基于K-Means的文本层次聚类算法研究 被引量:18
20
作者 尉景辉 何丕廉 孙越恒 《计算机应用》 CSCD 北大核心 2005年第10期2323-2324,共2页
提出了一种基于K-Means的文本层次聚类算法。它结合凝聚层次聚类和K-Means算法的特点,减少凝聚层次法在凝聚过程中的错误,提高了聚类质量。实验结果表明,该算法的聚类质量优于层次聚类法。
关键词 文本聚类 向量空间模型 K-meanS算法 层次聚类
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部