The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ...This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.展开更多
The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that ...The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems.展开更多
The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on th...The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP.展开更多
With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper propo...With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency.展开更多
As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed...As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.展开更多
Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and mos...Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and most difficult problems faced by unmanned surveys of debris flow valleys.This study proposes a new hybrid bat optimization algorithm,GRE-Bat(Good point set,Reverse learning,Elite Pool-Bat algorithm),for unmanned exploration path planning of debris flow sources in outdoor environments.In the GRE-Bat algorithm,the good point set strategy is adopted to evenly distribute the population,ensure sufficient coverage of the search space,and improve the stability of the convergence accuracy of the algorithm.Subsequently,a reverse learning strategy is introduced to increase the diversity of the population and improve the local stagnation problem of the algorithm.In addition,an Elite pool strategy is added to balance the replacement and learning behaviors of particles within the population based on elimination and local perturbation factors.To demonstrate the effectiveness of the GRE-Bat algorithm,we conducted multiple simulation experiments using benchmark test functions and digital terrain models.Compared to commonly used path planning algorithms such as the Bat Algorithm(BA)and the Improved Sparrow Search Algorithm(ISSA),the GRE-Bat algorithm can converge to the optimal value in different types of test functions and obtains a near-optimal solution after an average of 60 iterations.The GRE-Bat algorithm can obtain higher quality flight routes in the designated environment of unmanned investigation in the debris flow gully basin,demonstrating its potential for practical application.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
Estimation of velocity profile within mud depth is a long-standing and essential problem in debris flow dynamics.Until now,various velocity profiles have been proposed based on the fitting analysis of experimental mea...Estimation of velocity profile within mud depth is a long-standing and essential problem in debris flow dynamics.Until now,various velocity profiles have been proposed based on the fitting analysis of experimental measurements,but these are often limited by the observation conditions,such as the number of configured sensors.Therefore,the resulting linear velocity profiles usually exhibit limitations in reproducing the temporal-varied and nonlinear behavior during the debris flow process.In this study,we present a novel approach to explore the debris flow velocity profile in detail upon our previous 3D-HBPSPH numerical model,i.e.,the three-dimensional Smoothed Particle Hydrodynamic model incorporating the Herschel-Bulkley-Papanastasiou rheology.Specifically,we propose a stratification aggregation algorithm for interpreting the details of SPH particles,which enables the recording of temporal velocities of debris flow at different mud depths.To analyze the velocity profile,we introduce a logarithmic-based nonlinear model with two key parameters,that a controlling the shape of velocity profile and b concerning its temporal evolution.We verify the proposed velocity profile and explore its sensitivity using 34 sets of velocity data from three individual flume experiments in previous literature.Our results demonstrate that the proposed temporalvaried nonlinear velocity profile outperforms the previous linear profiles.展开更多
Bipolar plate is one of the key components of Proton Exchange Membrane Fuel Cell(PEMFC)and a reasonable flow field design for bipolar plate will improve cell performance.Herein,we have reviewed conventional and bionic...Bipolar plate is one of the key components of Proton Exchange Membrane Fuel Cell(PEMFC)and a reasonable flow field design for bipolar plate will improve cell performance.Herein,we have reviewed conventional and bionic flow field designs in recent literature with a focus on bionic flow fields.In particular,the bionic flow fields are summarized into two types:plant-inspired and animal-inspired.The conventional methodology for flow field design takes more time to find the optimum since it is based on experience and trial-and-error methods.In recent years,machine learning has been used to optimize flow field structures of bipolar plates owing to the advantages of excellent prediction and optimization capability.Artificial Intelligence(AI)-assisted flow field design has been summarized into two categories in this review:single-objective optimization and multi-objective optimization.Furthermore,a Threats-Opportunities-Weaknesses-Strengths(TOWS)analysis has been conducted for AI-assisted flow field design.It has been envisioned that AI can afford a powerful tool to solve the complex problem of bionic flow field design and significantly enhance the performance of PEMFC with bionic flow fields.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
The complex phenomena that occur during the plastic deformation process of aluminum alloys,such as strain rate hardening,dynamic recovery,recrystallization,and damage evolution,can significantly affect the properties ...The complex phenomena that occur during the plastic deformation process of aluminum alloys,such as strain rate hardening,dynamic recovery,recrystallization,and damage evolution,can significantly affect the properties of these alloys and limit their applications.Therefore,studying the high-temperature flow stress characteristics of these materials and developing accurate constitutive models has significant scientific research value.In this study,quasi-static tensile tests were conducted on 5754 aluminum alloy using an electronic testing machine combined with a hightemperature environmental chamber to explore its plastic flow behavior under main deformation parameters(such as deformation temperatures,strain rates,and strain).On the basis of true strain-stress data,a BP neural network constitutive model of the alloy was built,aiming to reveal the influence laws of main deformation parameters on flow stress.To further improve the model performance,the ant colony optimization algorithm is introduced to optimize the BP neural network constitutive model,and the relationship between the prediction stability of the model and the parameter settings is explored.Furthermore,the predictability of the two models was evaluated by the statistical indicators,including the correlation coefficient(R^(2)),RMSE,MAE,and confidence intervals.The research results indicate that the prediction accuracy,stability,and generalization ability of the optimized BP neural network constitutive model have been significantly enhanced.展开更多
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT...The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.展开更多
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags...Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.展开更多
A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Se...A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.展开更多
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig...Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.展开更多
After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algo...After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.展开更多
At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization...At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.展开更多
The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm ...The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature.In this method,processing se- quence of products could be expressed by the character encoding and each antibody represents a feasible schedule.Affinity was used to measure the matching degree between antibody and antigen.Then several antibodies producing operators,such as swopping,mov- ing,inverting,etc,were worked out.This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system.Promotion and inhibition of antibodies were realized by expected propagation ratio of an- tibodies,and in this way,premature convergence was improved.The simulation proved that this algorithm is effective.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
文摘This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.
基金The National Natural Science Foundation of China(No.72001107,72271120)the Fundamental Research Funds for the Central Universities(No.NS2024047,NP2024106)the China Postdoctoral Science Foundation(No.2020T130297,2019M660119).
文摘The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems.
基金supported in part by the National Natural Science Foundation of China under Grant No.52175490.
文摘The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP.
基金supported by the National Natural Science Foundation of China(Nos.52164001,52064006,52004072 and 52364004)the Science and Technology Support Project of Guizhou(Nos.[2020]4Y044,[2021]N404 and[2021]N511)+1 种基金the Guizhou Provincial Science and Technology Foundation(No.GCC[2022]005-1),Talents of Guizhou University(No.201901)the Special Research Funds of Guizhou University(Nos.201903,202011,and 202012).
文摘With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency.
基金Supported by National Natural Science Foundation of China(Grant No.51890881)。
文摘As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.
基金supported by National Natural Science Foundation of China(No.42302336)Project of the Department of Science and Technology of Sichuan Province(No.2024YFHZ0098,No.2023NSFSC0751)Open Project of Chengdu University of Information Technology(KYQN202317,760115027,KYTZ202278,KYTZ202280).
文摘Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and most difficult problems faced by unmanned surveys of debris flow valleys.This study proposes a new hybrid bat optimization algorithm,GRE-Bat(Good point set,Reverse learning,Elite Pool-Bat algorithm),for unmanned exploration path planning of debris flow sources in outdoor environments.In the GRE-Bat algorithm,the good point set strategy is adopted to evenly distribute the population,ensure sufficient coverage of the search space,and improve the stability of the convergence accuracy of the algorithm.Subsequently,a reverse learning strategy is introduced to increase the diversity of the population and improve the local stagnation problem of the algorithm.In addition,an Elite pool strategy is added to balance the replacement and learning behaviors of particles within the population based on elimination and local perturbation factors.To demonstrate the effectiveness of the GRE-Bat algorithm,we conducted multiple simulation experiments using benchmark test functions and digital terrain models.Compared to commonly used path planning algorithms such as the Bat Algorithm(BA)and the Improved Sparrow Search Algorithm(ISSA),the GRE-Bat algorithm can converge to the optimal value in different types of test functions and obtains a near-optimal solution after an average of 60 iterations.The GRE-Bat algorithm can obtain higher quality flight routes in the designated environment of unmanned investigation in the debris flow gully basin,demonstrating its potential for practical application.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
基金supported by the National Natural Science Foundation of China(Grant No.52078493)the Natural Science Foundation of Hunan Province(Grant No.2022JJ30700)+2 种基金the Natural Science Foundation for Excellent Young Scholars of Hunan(Grant No.2021JJ20057)the Science and Technology Plan Project of Changsha(Grant No.kq2305006)the Innovation Driven Program of Central South University(Grant No.2023CXQD033).
文摘Estimation of velocity profile within mud depth is a long-standing and essential problem in debris flow dynamics.Until now,various velocity profiles have been proposed based on the fitting analysis of experimental measurements,but these are often limited by the observation conditions,such as the number of configured sensors.Therefore,the resulting linear velocity profiles usually exhibit limitations in reproducing the temporal-varied and nonlinear behavior during the debris flow process.In this study,we present a novel approach to explore the debris flow velocity profile in detail upon our previous 3D-HBPSPH numerical model,i.e.,the three-dimensional Smoothed Particle Hydrodynamic model incorporating the Herschel-Bulkley-Papanastasiou rheology.Specifically,we propose a stratification aggregation algorithm for interpreting the details of SPH particles,which enables the recording of temporal velocities of debris flow at different mud depths.To analyze the velocity profile,we introduce a logarithmic-based nonlinear model with two key parameters,that a controlling the shape of velocity profile and b concerning its temporal evolution.We verify the proposed velocity profile and explore its sensitivity using 34 sets of velocity data from three individual flume experiments in previous literature.Our results demonstrate that the proposed temporalvaried nonlinear velocity profile outperforms the previous linear profiles.
基金supported by the National Natural Science Foundation of China(52075214and 51975245)the National Key R&D Program of China(No.2022YFE0138500)+3 种基金Jilin Provincial Science&Technology Department(20220201115GX)Key Science and Technology R&D Projects of Jilin Province(2020C023-3)Program of Jilin University Science and Technology Innovative Research Team(2020TD-03)the Fundamental Research Funds for the Central Universities.
文摘Bipolar plate is one of the key components of Proton Exchange Membrane Fuel Cell(PEMFC)and a reasonable flow field design for bipolar plate will improve cell performance.Herein,we have reviewed conventional and bionic flow field designs in recent literature with a focus on bionic flow fields.In particular,the bionic flow fields are summarized into two types:plant-inspired and animal-inspired.The conventional methodology for flow field design takes more time to find the optimum since it is based on experience and trial-and-error methods.In recent years,machine learning has been used to optimize flow field structures of bipolar plates owing to the advantages of excellent prediction and optimization capability.Artificial Intelligence(AI)-assisted flow field design has been summarized into two categories in this review:single-objective optimization and multi-objective optimization.Furthermore,a Threats-Opportunities-Weaknesses-Strengths(TOWS)analysis has been conducted for AI-assisted flow field design.It has been envisioned that AI can afford a powerful tool to solve the complex problem of bionic flow field design and significantly enhance the performance of PEMFC with bionic flow fields.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金funded by the Talent Introduction Project of Anhui Science and Technology University(RCYJ202105)Design and Key Technology Research of Multi Parameter Intelligent Control Instrument Junction Box(tzy202218)+3 种基金Natural Science Research Project of Higher Education Institutions in Anhui Province(2024AH050296)Research and Development of Fermentation Feed Drying Automatic Line(881314)Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food,Anhui Science and Technology University(iFAST-2024-6)Key Technologies and Applications of Impinging Stream Based Plant Protection Hedge Spray System(2024AH050318).
文摘The complex phenomena that occur during the plastic deformation process of aluminum alloys,such as strain rate hardening,dynamic recovery,recrystallization,and damage evolution,can significantly affect the properties of these alloys and limit their applications.Therefore,studying the high-temperature flow stress characteristics of these materials and developing accurate constitutive models has significant scientific research value.In this study,quasi-static tensile tests were conducted on 5754 aluminum alloy using an electronic testing machine combined with a hightemperature environmental chamber to explore its plastic flow behavior under main deformation parameters(such as deformation temperatures,strain rates,and strain).On the basis of true strain-stress data,a BP neural network constitutive model of the alloy was built,aiming to reveal the influence laws of main deformation parameters on flow stress.To further improve the model performance,the ant colony optimization algorithm is introduced to optimize the BP neural network constitutive model,and the relationship between the prediction stability of the model and the parameter settings is explored.Furthermore,the predictability of the two models was evaluated by the statistical indicators,including the correlation coefficient(R^(2)),RMSE,MAE,and confidence intervals.The research results indicate that the prediction accuracy,stability,and generalization ability of the optimized BP neural network constitutive model have been significantly enhanced.
文摘The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
基金Supported by National Natural Science Foundation of China(Grant No.71301008)Beijing Municipal Natural Science Foundation of China(Grant No.9144030)
文摘Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
基金Supported by the National Natural Science Foundation of China (61174040, 61104178)the Fundamental Research Funds for the Central Universities
文摘A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.
文摘Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.
文摘After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.
基金supported by the National Natural Science Foundation of China(Nos.51675076 and 51505062)the Science Fund for Creative Research Groups of NSFC(No.51621064)the Basic scientific research fees for Central Universities(Nos.DUT17GF109 and DUT16TD20)
文摘At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.
文摘The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature.In this method,processing se- quence of products could be expressed by the character encoding and each antibody represents a feasible schedule.Affinity was used to measure the matching degree between antibody and antigen.Then several antibodies producing operators,such as swopping,mov- ing,inverting,etc,were worked out.This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system.Promotion and inhibition of antibodies were realized by expected propagation ratio of an- tibodies,and in this way,premature convergence was improved.The simulation proved that this algorithm is effective.