This study is to explore the influence of maximum aggregate size(MAS)on the failure and corresponding size effect of concrete materials under low strain rates.The failure process of concrete was simulated by the mesos...This study is to explore the influence of maximum aggregate size(MAS)on the failure and corresponding size effect of concrete materials under low strain rates.The failure process of concrete was simulated by the mesoscale numerical method considering the internal heterogeneity of concrete and strain rate effect.Based on the mesoscale method,the failure behavior of concrete specimens with different structural sizes and MAS was investigated.Also,the influence of MAS on the failure modes,nominal strength and corresponding size effect of concrete were studied at the meso-scale.The simulation results indicated that MAS has an obvious influence on the failure modes of concrete subjected to axial compressive and tensile loads.The nominal tensile strength increased as the MAS increased,while the nominal compressive strength increased first and then decreased as the MAS increases under quasi-static load.In addition,it was found that the size effect on nominal strength of concrete would be weakened with the increase of strain rate.When the applied strain rate reached 1 s^-1,the size effect on nominal strength of concrete disappeard.Moreover,the MAS has an ignorable influence on the dynamic size effect of concrete under uniaxial compression and tension.展开更多
The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yiel...The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yielded a statistically insignificant positive mild trend. The IMD and MCIMD downscaled model’s time series data respectively produced MK statistics varying from 1.403 to 1.4729, and 1.403 to 1.463 which were less than the critical Z-value of 1.96. Also, the slope magnitude obtained showed a mild increasing trend in variation from 0.0189 to 0.3713, and 0.0175 to 0.5426, with the rate of change in rainfall intensity at 24 hours duration as 0.4536 and 0.42 mm/hr.year (4.536 and 4.2 mm/decade) for the IMD and the MCIMD time series data, respectively. The trend change point date occurred in the year 2000 from the distribution-free CUSUM test with the trend maintaining a significant and steady increase from 2010 to 2015. Thus, this study established the existence of a trend, which is an indication of a changing climate, and satisfied the condition for rainfall Non-stationary intensity-duration-frequency (NS-IDF) modeling required for infrastructural design for combating flooding events.展开更多
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwellin...Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.展开更多
The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predic...The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predict the droplet size distribution. This paper presents a new sub-model based on the deterministic aspects of liquid atomization process independent of the experimental data to provide the mean droplets diameter for using in the maximum entropy formulation(MEF). For this purpose, a theoretical model based on the approach of energy conservation law entitled energy-based model(EBM) is presented. Based on this approach, atomization occurs due to the kinetic energy loss. Prediction of the combined model(MEF/EBM) is in good agreement with the available experimental data. The energy-based model can be used as a fast and reliable enough model to obtain a good estimation of the mean droplets diameter of a spray and the combined model(MEF/EBM) can be used to well predict the droplet size distribution at the primary breakup.展开更多
This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point the...This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point theorem.Existence and uniqueness of optimal control are shown by functional analytical approach.Optimality conditions describing the optimal strategy are established via tangent and normal cones technique.The results are of the first ones for this novel structure.展开更多
Abdominal aortic aneurysm is a common pathology in the aging population of the developed world which carries a significant mortality in excess of 80% in case of rupture. Aneurysmal disease probably represents the only...Abdominal aortic aneurysm is a common pathology in the aging population of the developed world which carries a significant mortality in excess of 80% in case of rupture. Aneurysmal disease probably represents the only surgical condition in which size is such a critical determinant of the need for intervention and therefore the ability to accurately and reproducibly record aneurysm size and growth over time is of outmost importance. In the same time that imaging techniques may be limited by intra- and inter-observer variability and there may be inconsistencies due to different modalities [ultrasound, computed tomography(CT)], rapid technologic advancement have taken aortic imaging to the next level. Digital imaging, multidetector scanners, thin slice CT and most- importantly the ability to perform 3-dimensional reconstruction and image post-processing have currently become widely available rendering most of the imaging modalities used in the past out of date. The aim of the current article is to report on various imaging methods and current state of the art techniques used to record aneurysm size and growth. Moreover we aim to emphasize on the future research directions and report on techniques which probably will be widely used and incorporated in clinical practice in the near future.展开更多
The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many ...The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many marine mollusks are available in the literature,however very few research have evaluated about the accuracy of genetic parameters estimated with different family structures.Thus,in the present study,the effect of parent sample size for estimating the precision of genetic parameters of four growth traits in clam M.meretrix by factorial designs were analyzed through restricted maximum likelihood(REML) and Bayesian.The results showed that the average estimated heritabilities of growth traits obtained from REML were 0.23-0.32 for 9 and 16 full-sib families and 0.19-0.22 for 25 full-sib families.When using Bayesian inference,the average estimated heritabilities were0.11-0.12 for 9 and 16 full-sib families and 0.13-0.16 for 25 full-sib families.Compared with REML,Bayesian got lower heritabilities,but still remained at a medium level.When the number of parents increased from 6 to 10,the estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference.Genetic correlations among traits were positive and high and had no significant difference between different sizes of designs.The accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families.Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation of a practical selective breeding program in the clam M.meretrix.展开更多
It is important to know the maximum solid solubility( C max ) of various transition metals in a metal when one designs multi component alloys. There have been several semi empirical approaches to qualitatively predict...It is important to know the maximum solid solubility( C max ) of various transition metals in a metal when one designs multi component alloys. There have been several semi empirical approaches to qualitatively predict the C max , such as Darken Gurry(D G) theorem, Miedema Chelikowsky(M C) theorem, electron concentration rule and the bond parameter rule. However, they are not particularly valid for the prediction of C max . It was developed on the basis of energetics of alloys as a new method to predict C max of different transition metals in metal Ti, which can be described as a semi empirical equation using the atomic parameters, i e, electronegativity difference, atomic diameter and electron concentration. It shows that the present method can be used to explain and deduce D G theorem, M C theorem and electron concentration rule.展开更多
Based on the principle of energy change of alloy formation, the rules for the maximum solid solubility ( C max ) of various transition metals in the metals Ti, Zr and Hf were studied. It is deduced that the C max of t...Based on the principle of energy change of alloy formation, the rules for the maximum solid solubility ( C max ) of various transition metals in the metals Ti, Zr and Hf were studied. It is deduced that the C max of transition metals in the metals Ti, Zr and Hf can be described as a semi empirical equation using three atomic parameters, i.e., electronegativity difference, atomic diameter and electron concentration. From the equation analysis by using experimental data, it shows that atomic size parameter and electronegativity difference are the main factors that affect the C max of the transition metals in the metals Ti, Zr and Hf while electron concentration parameter has the smallest effect on C max .展开更多
基金supported by the National Key Basic Research and Development Program of China(No. 2018YFC1504302)the National Natural Science Foundation of China(Nos. 51822801,51421005).
文摘This study is to explore the influence of maximum aggregate size(MAS)on the failure and corresponding size effect of concrete materials under low strain rates.The failure process of concrete was simulated by the mesoscale numerical method considering the internal heterogeneity of concrete and strain rate effect.Based on the mesoscale method,the failure behavior of concrete specimens with different structural sizes and MAS was investigated.Also,the influence of MAS on the failure modes,nominal strength and corresponding size effect of concrete were studied at the meso-scale.The simulation results indicated that MAS has an obvious influence on the failure modes of concrete subjected to axial compressive and tensile loads.The nominal tensile strength increased as the MAS increased,while the nominal compressive strength increased first and then decreased as the MAS increases under quasi-static load.In addition,it was found that the size effect on nominal strength of concrete would be weakened with the increase of strain rate.When the applied strain rate reached 1 s^-1,the size effect on nominal strength of concrete disappeard.Moreover,the MAS has an ignorable influence on the dynamic size effect of concrete under uniaxial compression and tension.
文摘The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yielded a statistically insignificant positive mild trend. The IMD and MCIMD downscaled model’s time series data respectively produced MK statistics varying from 1.403 to 1.4729, and 1.403 to 1.463 which were less than the critical Z-value of 1.96. Also, the slope magnitude obtained showed a mild increasing trend in variation from 0.0189 to 0.3713, and 0.0175 to 0.5426, with the rate of change in rainfall intensity at 24 hours duration as 0.4536 and 0.42 mm/hr.year (4.536 and 4.2 mm/decade) for the IMD and the MCIMD time series data, respectively. The trend change point date occurred in the year 2000 from the distribution-free CUSUM test with the trend maintaining a significant and steady increase from 2010 to 2015. Thus, this study established the existence of a trend, which is an indication of a changing climate, and satisfied the condition for rainfall Non-stationary intensity-duration-frequency (NS-IDF) modeling required for infrastructural design for combating flooding events.
基金The Global Change and Air-Sea Interaction Program under contract Nos GASI-02-IND-ST-Sspr and GASI-03-01-03-03the National Natural Science Foundation of China under contract No.41506185the Special Funds for Basic Ocean Science Research of the First Institute of Oceanography,State Oceanic Administration of China under contract Nos 2013T04 and 2012T08
文摘Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.
文摘The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predict the droplet size distribution. This paper presents a new sub-model based on the deterministic aspects of liquid atomization process independent of the experimental data to provide the mean droplets diameter for using in the maximum entropy formulation(MEF). For this purpose, a theoretical model based on the approach of energy conservation law entitled energy-based model(EBM) is presented. Based on this approach, atomization occurs due to the kinetic energy loss. Prediction of the combined model(MEF/EBM) is in good agreement with the available experimental data. The energy-based model can be used as a fast and reliable enough model to obtain a good estimation of the mean droplets diameter of a spray and the combined model(MEF/EBM) can be used to well predict the droplet size distribution at the primary breakup.
基金Supported by the ZPNSFC (LY12A01023)the National Natural Science Foundation of China (11271104,11061017)
文摘This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point theorem.Existence and uniqueness of optimal control are shown by functional analytical approach.Optimality conditions describing the optimal strategy are established via tangent and normal cones technique.The results are of the first ones for this novel structure.
文摘Abdominal aortic aneurysm is a common pathology in the aging population of the developed world which carries a significant mortality in excess of 80% in case of rupture. Aneurysmal disease probably represents the only surgical condition in which size is such a critical determinant of the need for intervention and therefore the ability to accurately and reproducibly record aneurysm size and growth over time is of outmost importance. In the same time that imaging techniques may be limited by intra- and inter-observer variability and there may be inconsistencies due to different modalities [ultrasound, computed tomography(CT)], rapid technologic advancement have taken aortic imaging to the next level. Digital imaging, multidetector scanners, thin slice CT and most- importantly the ability to perform 3-dimensional reconstruction and image post-processing have currently become widely available rendering most of the imaging modalities used in the past out of date. The aim of the current article is to report on various imaging methods and current state of the art techniques used to record aneurysm size and growth. Moreover we aim to emphasize on the future research directions and report on techniques which probably will be widely used and incorporated in clinical practice in the near future.
基金The National High Technology Research and Development Program(863 program)of China under contract No.2012AA10A410the Zhejiang Science and Technology Project of Agricultural Breeding under contract No.2012C12907-4the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASKJ02
文摘The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many marine mollusks are available in the literature,however very few research have evaluated about the accuracy of genetic parameters estimated with different family structures.Thus,in the present study,the effect of parent sample size for estimating the precision of genetic parameters of four growth traits in clam M.meretrix by factorial designs were analyzed through restricted maximum likelihood(REML) and Bayesian.The results showed that the average estimated heritabilities of growth traits obtained from REML were 0.23-0.32 for 9 and 16 full-sib families and 0.19-0.22 for 25 full-sib families.When using Bayesian inference,the average estimated heritabilities were0.11-0.12 for 9 and 16 full-sib families and 0.13-0.16 for 25 full-sib families.Compared with REML,Bayesian got lower heritabilities,but still remained at a medium level.When the number of parents increased from 6 to 10,the estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference.Genetic correlations among traits were positive and high and had no significant difference between different sizes of designs.The accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families.Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation of a practical selective breeding program in the clam M.meretrix.
文摘It is important to know the maximum solid solubility( C max ) of various transition metals in a metal when one designs multi component alloys. There have been several semi empirical approaches to qualitatively predict the C max , such as Darken Gurry(D G) theorem, Miedema Chelikowsky(M C) theorem, electron concentration rule and the bond parameter rule. However, they are not particularly valid for the prediction of C max . It was developed on the basis of energetics of alloys as a new method to predict C max of different transition metals in metal Ti, which can be described as a semi empirical equation using the atomic parameters, i e, electronegativity difference, atomic diameter and electron concentration. It shows that the present method can be used to explain and deduce D G theorem, M C theorem and electron concentration rule.
文摘Based on the principle of energy change of alloy formation, the rules for the maximum solid solubility ( C max ) of various transition metals in the metals Ti, Zr and Hf were studied. It is deduced that the C max of transition metals in the metals Ti, Zr and Hf can be described as a semi empirical equation using three atomic parameters, i.e., electronegativity difference, atomic diameter and electron concentration. From the equation analysis by using experimental data, it shows that atomic size parameter and electronegativity difference are the main factors that affect the C max of the transition metals in the metals Ti, Zr and Hf while electron concentration parameter has the smallest effect on C max .