As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Bei...As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GC-TOFMS).The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied.There is no significant difference in the concentrations of 1-methylpropylbenzene(MPB)in all studied oils.However,the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils.Based on the significant concentration difference of 1-and 2-MPB in all studied oils,1-/2-MPB(MPBr)was proposed as an indicator to identify the source of organic matter in crude oils.The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms,bacteria,and algae.The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms,bacteria and algae,and terrestrial higher plants.The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants.The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration.The MPBr values can be used to infer the organic matter origin in sediments,especially for the lack of biomarkers of light oils and condensates.展开更多
Multi-biomarker indexes were analyzed for two piston cores from potential cold seep areas of the South China Sea off southwestern Taiwan. Total organic carbon(TOC) normalized terrestrial(n-alkanes) and marine(bra...Multi-biomarker indexes were analyzed for two piston cores from potential cold seep areas of the South China Sea off southwestern Taiwan. Total organic carbon(TOC) normalized terrestrial(n-alkanes) and marine(brassicasterol, dinosterol, alkenones and iso-GDGTs) biomarker contents and ratios(TMBR, 1/Pmar-aq, BIT) were used to evaluate the contributions of terrestrial and marine organic matter(TOM and MOM respectively) to the sedimentary organic matter, indicating that MOM dominated the organic sources in Core MD052911 and the sedimentary organic matter in Core ORI-_(86)0-22 was mainly derived from terrestrial inputs, and different morphologies were the likely reason for TOM percentage differences. BIT results suggested that river-transported terrestrial soil organic matter was not a major source of TOM of sedimentary organic matter around these settings.Diagnostic biomarkers for methane-oxidizing archaea(MOA) were only detected in one sample at 172 cm depth of Core ORI-_(86)0-22, with abnormally high iso-GDGTs content and Methane Index(MI) value(0.94). These results indicated high anaerobic oxidation of methane(AOM) activities at or around 172 cm in Core ORI-_(86)0-22.However in Core MD052911, MOA biomarkers were not detected and MI values were lower(0.19–0.38), indicated insignificant contributions of iso-GDGTs from methanotrophic archaea and the absence of significant AOM activities. Biomarker results thus indicated that the discontinuous upward methane seepage and insufficient methane flux could not induce high AOM activities in our sampling sites. In addition, the different patterns of TEX_(86) and U_(37)^(K′) temperature in two cores suggested that AOM activities affected TEX_(86)37 temperature estimates with lower values in Core ORI-_(86)0-22, but not significantly on TEX_(86) temperature estimates in Core MD052911.展开更多
The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST)oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB)were analysed.Reconstruction of the early ...The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST)oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB)were analysed.Reconstruction of the early Oligocene-early Miocene(36–16 Ma)palaeovegetation and source analyses of organic matter(OM)were conducted using aliphatic biomarkers in ancient sediments and DST oils.Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks(SRs)but had varying relative proportions.The four distribution patterns derived from n-alkanes,terpanes,and steranes are representative of four OM composition models of the Yacheng-Sanya SRs,including model A,model B,model C,and model D,which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM.Some terrigenous higher plantderived biomarkers,including oleanane,des-A-oleanane,C_(29)ααα20R sterane,bicadinanes,the C_(19)/(C_(19)+C_(23))tricyclic terpane ratio,and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene,and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation.These findings are consistent with the incremental total organic carbon and free hydrocarbons+potential hydrocarbons(S_1+S_2)in the lower Lingshuilower Sanya strata with a significant enrichment of OM in the E_3l_1-N_1s_2 shales.The maturity-and environmentsensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows,except for some immature Sanya Formation shales.In addition,most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions.Furthermore,terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments,compared to the anoxic to sub-anoxic conditions of the Yacheng Formation.展开更多
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
Carbon and nitrogen stable isotopes are useful tracers for distinguishing marine and terrestrial plant sources of sedimentary organic matter(OM),and for identifying OM from different types of plants.By analyzing the c...Carbon and nitrogen stable isotopes are useful tracers for distinguishing marine and terrestrial plant sources of sedimentary organic matter(OM),and for identifying OM from different types of plants.By analyzing the carbon and nitrogen stable isotopes of marine and riverine sediments from Bohai Bay and its catchment,we were able to identify the source of OM in these sediments.The stable carbon isotope values of Bohai Bay sediments were between-22.94‰ and-23.90‰,while those of riverine sediments were from-24.45‰ to-32.50‰.Marine algae were the main source of OM in Bohai Bay sediments.However,lacustrine algae were the main source of riverine sediments,not terrestrial OM.The nitrogen isotopes in Bohai Bay sediments decreased in eastward direction,with increasing distance from the coastline,which suggested a higher degree of impact from human activities along the coast.展开更多
Municipal wastewater reclamation is becoming of increasing importance in the world to solve the problem of water scarcity. A better understanding of the molecular composition of effluent organic matter(Ef OM) in the...Municipal wastewater reclamation is becoming of increasing importance in the world to solve the problem of water scarcity. A better understanding of the molecular composition of effluent organic matter(Ef OM) in the treated effluents of municipal wastewater treatment plants(WWTPs) is crucial for ensuring the safety of water reuse. In this study, the molecular composition of Ef OM in the secondary effluent of a WWTP in Beijing and the reclaimed water further treated with a coagulation–sedimentation–ozonation process were characterized using a non-target Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) method and compared to that of natural organic matter(NOM) in the local source water from a reservoir. It was found that the molecular composition of Ef OM in the secondary effluent and reclaimed water was dominated by CHOS formulas, while NOM in the source water was dominated by CHO formulas. The CHO formulas of the three samples had similar origins. Anthropogenic surfactants were responsible for the CHOS formulas in Ef OM of the secondary effluent and were not well removed by the coagulation-sedimentation-ozonation treatment process adopted.展开更多
To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled i...To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas(Yuzhong County,Xigu District and Chengguan District) of Lanzhou, and their chemical composition(elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM_10(369.48 μg/m^3) and PM_(2.5)(295.42 μg/m^3) were detected in Xigu District in the winter, the lowest concentration of PM_(2.5)(53.15 μg/m^3) was observed in Yuzhong District in the fall and PM_10(89.60 μg/m^3) in Xigu District in the fall.The overall average OC/EC(organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA(the sum of sulfate, nitrate,ammonium, SNA) in PM_(2.5)in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM_(2.5)and PM_10 in Yuzhong County was generally lower than that at other sites in all seasons(0.24–0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization(PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.展开更多
It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer stud...It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer studies, however, have examined the particle density, and the size and shape characteristics of particles, which may have important implications for evaluating the particle capture efficiency of plants, and identifying the particle sources. In addition, the role of different vegetation types is as yet unclear. Here, we chose three species of different vegetation types, and firstly applied an object-based classification approach to automatically identify the particles from scanning electron microscope(SEM)micrographs. We then quantified the particle capture efficiency, and the major sources of particles were identified. We found(1) Rosa xanthina Lindl(shrub species) had greater retention efficiency than Broussonetia papyrifera(broadleaf species) and Pinus bungeana Zucc.(coniferous species), in terms of particle number and particle area cover.(2) 97.9% of the identified particles had diameter ≤10 μm, and 67.1% of them had diameter ≤2.5 μm. 89.8% of the particles had smooth boundaries, with 23.4% of them being nearly spherical.(3) 32.4%–74.1% of the particles were generated from bare soil and construction activities, and 15.5%–23.0% were mainly from vehicle exhaust and cooking fumes.展开更多
As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils ...As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils are still rare, especially on the Qinghai-Tibetan Plateau(QTP), the highest plateau in the world, which contributes sediments to many large rivers in Asia. This study investigates the composition, distribution and source of FAs with increasing soil depths from 17 typical alpine grassland sites in the QTP. The most abundant FAs included the ubiquitous C16 FA and even-numbered long-chain FAs(C20–C30), indicating mixed inputs from microbial and higher plant sources. Source apportionment showed that higher plants were the dominant contributor of FAs(approximately 40%) in QTP soils. The abundance of FAs decreased with soil depth, with the highest value(1.08±0.09 mg/g C) at a 0–10 cm depth and the lowest value(0.46±0.12 mg/g C) at a 50–70 cm depth, due to much lower plant inputs into the deeper horizons. The total concentration of FAs was negatively correlated to the mean annual temperature(MAT; P<0.05) and soil p H(P<0.01), suggesting that the preservation of FAs was favored in low-MAT and low-p H soils on the QTP. The abundance of fresh C source FAs increased significantly with the mean annual precipitation(MAP; P<0.05), indicating that high MAP facilitates the accumulation of fresh FAs in QTP soils. Other environmental parameters, such as the soil mineral content(aluminum and iron oxide), microbial community composition as well as litter quality and quantity, may also exert a strong control on the preservation of FAs in QTP soils and warrant further research to better understand the mechanisms responsible for the preservation of FAs in QTP soils.展开更多
基金supported by Doctor's Scientific Research Initiation Project of Yan'an University(YAU202213093)National Nature Science Foundation of China(Grant No.41503029).
文摘As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GC-TOFMS).The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied.There is no significant difference in the concentrations of 1-methylpropylbenzene(MPB)in all studied oils.However,the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils.Based on the significant concentration difference of 1-and 2-MPB in all studied oils,1-/2-MPB(MPBr)was proposed as an indicator to identify the source of organic matter in crude oils.The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms,bacteria,and algae.The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms,bacteria and algae,and terrestrial higher plants.The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants.The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration.The MPBr values can be used to infer the organic matter origin in sediments,especially for the lack of biomarkers of light oils and condensates.
基金The National Natural Science Foundation of China under contract No.41521064the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology under contract No.MRE201301
文摘Multi-biomarker indexes were analyzed for two piston cores from potential cold seep areas of the South China Sea off southwestern Taiwan. Total organic carbon(TOC) normalized terrestrial(n-alkanes) and marine(brassicasterol, dinosterol, alkenones and iso-GDGTs) biomarker contents and ratios(TMBR, 1/Pmar-aq, BIT) were used to evaluate the contributions of terrestrial and marine organic matter(TOM and MOM respectively) to the sedimentary organic matter, indicating that MOM dominated the organic sources in Core MD052911 and the sedimentary organic matter in Core ORI-_(86)0-22 was mainly derived from terrestrial inputs, and different morphologies were the likely reason for TOM percentage differences. BIT results suggested that river-transported terrestrial soil organic matter was not a major source of TOM of sedimentary organic matter around these settings.Diagnostic biomarkers for methane-oxidizing archaea(MOA) were only detected in one sample at 172 cm depth of Core ORI-_(86)0-22, with abnormally high iso-GDGTs content and Methane Index(MI) value(0.94). These results indicated high anaerobic oxidation of methane(AOM) activities at or around 172 cm in Core ORI-_(86)0-22.However in Core MD052911, MOA biomarkers were not detected and MI values were lower(0.19–0.38), indicated insignificant contributions of iso-GDGTs from methanotrophic archaea and the absence of significant AOM activities. Biomarker results thus indicated that the discontinuous upward methane seepage and insufficient methane flux could not induce high AOM activities in our sampling sites. In addition, the different patterns of TEX_(86) and U_(37)^(K′) temperature in two cores suggested that AOM activities affected TEX_(86)37 temperature estimates with lower values in Core ORI-_(86)0-22, but not significantly on TEX_(86) temperature estimates in Core MD052911.
基金The National Natural Science Foundation of China under contract No.41872131。
文摘The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST)oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB)were analysed.Reconstruction of the early Oligocene-early Miocene(36–16 Ma)palaeovegetation and source analyses of organic matter(OM)were conducted using aliphatic biomarkers in ancient sediments and DST oils.Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks(SRs)but had varying relative proportions.The four distribution patterns derived from n-alkanes,terpanes,and steranes are representative of four OM composition models of the Yacheng-Sanya SRs,including model A,model B,model C,and model D,which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM.Some terrigenous higher plantderived biomarkers,including oleanane,des-A-oleanane,C_(29)ααα20R sterane,bicadinanes,the C_(19)/(C_(19)+C_(23))tricyclic terpane ratio,and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene,and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation.These findings are consistent with the incremental total organic carbon and free hydrocarbons+potential hydrocarbons(S_1+S_2)in the lower Lingshuilower Sanya strata with a significant enrichment of OM in the E_3l_1-N_1s_2 shales.The maturity-and environmentsensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows,except for some immature Sanya Formation shales.In addition,most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions.Furthermore,terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments,compared to the anoxic to sub-anoxic conditions of the Yacheng Formation.
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
基金Supported by the National Natural Science Foundation of China(No.41273068)the Tianjin Research Program of Applied Science and Advanced Technology(No.11JCZDJC24100)
文摘Carbon and nitrogen stable isotopes are useful tracers for distinguishing marine and terrestrial plant sources of sedimentary organic matter(OM),and for identifying OM from different types of plants.By analyzing the carbon and nitrogen stable isotopes of marine and riverine sediments from Bohai Bay and its catchment,we were able to identify the source of OM in these sediments.The stable carbon isotope values of Bohai Bay sediments were between-22.94‰ and-23.90‰,while those of riverine sediments were from-24.45‰ to-32.50‰.Marine algae were the main source of OM in Bohai Bay sediments.However,lacustrine algae were the main source of riverine sediments,not terrestrial OM.The nitrogen isotopes in Bohai Bay sediments decreased in eastward direction,with increasing distance from the coastline,which suggested a higher degree of impact from human activities along the coast.
基金supported by the National Natural Science Foundation of China(Nos.21377150 and 51578530)
文摘Municipal wastewater reclamation is becoming of increasing importance in the world to solve the problem of water scarcity. A better understanding of the molecular composition of effluent organic matter(Ef OM) in the treated effluents of municipal wastewater treatment plants(WWTPs) is crucial for ensuring the safety of water reuse. In this study, the molecular composition of Ef OM in the secondary effluent of a WWTP in Beijing and the reclaimed water further treated with a coagulation–sedimentation–ozonation process were characterized using a non-target Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) method and compared to that of natural organic matter(NOM) in the local source water from a reservoir. It was found that the molecular composition of Ef OM in the secondary effluent and reclaimed water was dominated by CHOS formulas, while NOM in the source water was dominated by CHO formulas. The CHO formulas of the three samples had similar origins. Anthropogenic surfactants were responsible for the CHOS formulas in Ef OM of the secondary effluent and were not well removed by the coagulation-sedimentation-ozonation treatment process adopted.
基金supported by the Special Scientific Research Funds for Environment Protection Commonweal Section (Nos.201409003,201309011)the National Natural Science Foundation of China (No.41375132)+2 种基金the CAS Strategic Priority Research Program (No.XDB05030400)the National Basic Research Program of China (No.2014CB441203)the Beijing Municipal Science and Technology Plan (No.Z131100006113013)
文摘To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas(Yuzhong County,Xigu District and Chengguan District) of Lanzhou, and their chemical composition(elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM_10(369.48 μg/m^3) and PM_(2.5)(295.42 μg/m^3) were detected in Xigu District in the winter, the lowest concentration of PM_(2.5)(53.15 μg/m^3) was observed in Yuzhong District in the fall and PM_10(89.60 μg/m^3) in Xigu District in the fall.The overall average OC/EC(organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA(the sum of sulfate, nitrate,ammonium, SNA) in PM_(2.5)in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM_(2.5)and PM_10 in Yuzhong County was generally lower than that at other sites in all seasons(0.24–0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization(PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.
基金supported by the “One-Hundred Talents” program of the Chinese Academy of Sciences (No. N234)the National Natural Science Foundation of China(Nos. 41430638 and 41301199)the project “Major Special Project-The China High-Resolution Earth Observation System”
文摘It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer studies, however, have examined the particle density, and the size and shape characteristics of particles, which may have important implications for evaluating the particle capture efficiency of plants, and identifying the particle sources. In addition, the role of different vegetation types is as yet unclear. Here, we chose three species of different vegetation types, and firstly applied an object-based classification approach to automatically identify the particles from scanning electron microscope(SEM)micrographs. We then quantified the particle capture efficiency, and the major sources of particles were identified. We found(1) Rosa xanthina Lindl(shrub species) had greater retention efficiency than Broussonetia papyrifera(broadleaf species) and Pinus bungeana Zucc.(coniferous species), in terms of particle number and particle area cover.(2) 97.9% of the identified particles had diameter ≤10 μm, and 67.1% of them had diameter ≤2.5 μm. 89.8% of the particles had smooth boundaries, with 23.4% of them being nearly spherical.(3) 32.4%–74.1% of the particles were generated from bare soil and construction activities, and 15.5%–23.0% were mainly from vehicle exhaust and cooking fumes.
基金supported by the Chinese National Key Development Program for Basic Research (Grant Nos. 2014CB954003 & 2015CB954201)the National Natural Science Foundation of China (Grant Nos. 31370491 & 41503073)+1 种基金National 1000 Young Talents Programthe "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05050404)
文摘As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils are still rare, especially on the Qinghai-Tibetan Plateau(QTP), the highest plateau in the world, which contributes sediments to many large rivers in Asia. This study investigates the composition, distribution and source of FAs with increasing soil depths from 17 typical alpine grassland sites in the QTP. The most abundant FAs included the ubiquitous C16 FA and even-numbered long-chain FAs(C20–C30), indicating mixed inputs from microbial and higher plant sources. Source apportionment showed that higher plants were the dominant contributor of FAs(approximately 40%) in QTP soils. The abundance of FAs decreased with soil depth, with the highest value(1.08±0.09 mg/g C) at a 0–10 cm depth and the lowest value(0.46±0.12 mg/g C) at a 50–70 cm depth, due to much lower plant inputs into the deeper horizons. The total concentration of FAs was negatively correlated to the mean annual temperature(MAT; P<0.05) and soil p H(P<0.01), suggesting that the preservation of FAs was favored in low-MAT and low-p H soils on the QTP. The abundance of fresh C source FAs increased significantly with the mean annual precipitation(MAP; P<0.05), indicating that high MAP facilitates the accumulation of fresh FAs in QTP soils. Other environmental parameters, such as the soil mineral content(aluminum and iron oxide), microbial community composition as well as litter quality and quantity, may also exert a strong control on the preservation of FAs in QTP soils and warrant further research to better understand the mechanisms responsible for the preservation of FAs in QTP soils.