The Lyapunov exponent is important quantitative index for describing chaotic attractors. Since Wolf put up the trajectory algorithm to Lyapunov exponent in 1985, how to calculate the Lyapunov exponent with accuracy ha...The Lyapunov exponent is important quantitative index for describing chaotic attractors. Since Wolf put up the trajectory algorithm to Lyapunov exponent in 1985, how to calculate the Lyapunov exponent with accuracy has become a very important question. Based on the theoretical algorithm of Zuo Binwu, the matric algorithm of Lyapunov exponent is given, and the results with the results of Wolf's algorithm are compared. The calculating results validate that the matric algorithm has sufficient accuracy, and the relationship between the character of attractor and the value of Lyapunov exponent is studied in this paper. The corresponding conclusions are given in this paper.展开更多
The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder nee...The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.展开更多
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using ...In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.[WT5,5”HZ]展开更多
The current paper is mainly devoted to construct a generalized symbolic Thomas algorithm that will never fail. Two new efficient and reliable computational algorithms are given. The algorithms are suited for implement...The current paper is mainly devoted to construct a generalized symbolic Thomas algorithm that will never fail. Two new efficient and reliable computational algorithms are given. The algorithms are suited for implementation using computer algebra systems (CAS) such as Mathematica, Macsyma and Maple. Some illustrative examples are given.展开更多
The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equations. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The computational cost of ...The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equations. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The computational cost of the algorithms is obtained. Some illustrative examples are given.展开更多
MINRES-CN is an iterative method for solving systems of linear equations with conjugate-normal coefficient matrices whose conspectra are located on algebraic curves of a low degree. This method was proposed in a previ...MINRES-CN is an iterative method for solving systems of linear equations with conjugate-normal coefficient matrices whose conspectra are located on algebraic curves of a low degree. This method was proposed in a previous publication of author and KH. D. Ikramov. In this paper, the range of applicability of MINRES-CN is extended in new direction. These are conjugate normal matrices that are low rank perturbations of Symmetric matrices. Examples are given that demonstrate a higher efficiency of MINRES-CN for this class of systems compared to the well-known algorithm GMRES.展开更多
Newton’s iteration is a fundamental tool for numerical solutions of systems of equations. The well-known iteration ?rapidly refines a crude initial approximation X0?to the inverse of a general nonsingular matrix. In ...Newton’s iteration is a fundamental tool for numerical solutions of systems of equations. The well-known iteration ?rapidly refines a crude initial approximation X0?to the inverse of a general nonsingular matrix. In this paper, we will extend and apply this method to n× n?structured matrices M?, in which matrix multiplication has a lower computational cost. These matrices can be represented by their short generators which allow faster computations based on the displacement operators tool. However, the length of the generators is tend to grow and the iterations do not preserve matrix structure. So, the main goal is to control the growth of the length of the short displacement generators so that we can operate with matrices of low rank and carry out the computations much faster. In order to achieve our goal, we will compress the computed approximations to the inverse to yield a superfast algorithm. We will describe two different compression techniques based on the SVD and substitution and we will analyze these approaches. Our main algorithm can be applied to more general classes of structured matrices.展开更多
Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the S...Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare these methods. We offer the correct syntax to deactivate the similarity algorithm for clustering analysis within the hierarchical clustering module of SPSS. Findings: When one inputs co-occurrence matrices into the data editor of the SPSS hierarchical clustering module without deactivating the embedded similarity algorithm, the program calculates similarity twice, and thus distorts and overestimates the degree of similarity. Practical implications: We offer the correct syntax to block the similarity algorithm for clustering analysis in the SPSS hierarchical clustering module in the case of co-occurrence matrices. This syntax enables researchers to avoid obtaining incorrect results. Originality/value: This paper presents a method of editing syntax to prevent the default use of a similarity algorithm for SPSS's hierarchical clustering module. This will help researchers, especially those from China, to properly implement the co-occurrence matrix when using SPSS for hierarchical cluster analysis, in order to provide more scientific and rational results.展开更多
基金the National Natural Science Foundation of China
文摘The Lyapunov exponent is important quantitative index for describing chaotic attractors. Since Wolf put up the trajectory algorithm to Lyapunov exponent in 1985, how to calculate the Lyapunov exponent with accuracy has become a very important question. Based on the theoretical algorithm of Zuo Binwu, the matric algorithm of Lyapunov exponent is given, and the results with the results of Wolf's algorithm are compared. The calculating results validate that the matric algorithm has sufficient accuracy, and the relationship between the character of attractor and the value of Lyapunov exponent is studied in this paper. The corresponding conclusions are given in this paper.
基金supported by Beijing Natural Science Foundation(4102050)the National Natural Science of Foundation of China(NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.
文摘In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.[WT5,5”HZ]
文摘The current paper is mainly devoted to construct a generalized symbolic Thomas algorithm that will never fail. Two new efficient and reliable computational algorithms are given. The algorithms are suited for implementation using computer algebra systems (CAS) such as Mathematica, Macsyma and Maple. Some illustrative examples are given.
文摘The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equations. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The computational cost of the algorithms is obtained. Some illustrative examples are given.
文摘MINRES-CN is an iterative method for solving systems of linear equations with conjugate-normal coefficient matrices whose conspectra are located on algebraic curves of a low degree. This method was proposed in a previous publication of author and KH. D. Ikramov. In this paper, the range of applicability of MINRES-CN is extended in new direction. These are conjugate normal matrices that are low rank perturbations of Symmetric matrices. Examples are given that demonstrate a higher efficiency of MINRES-CN for this class of systems compared to the well-known algorithm GMRES.
文摘Newton’s iteration is a fundamental tool for numerical solutions of systems of equations. The well-known iteration ?rapidly refines a crude initial approximation X0?to the inverse of a general nonsingular matrix. In this paper, we will extend and apply this method to n× n?structured matrices M?, in which matrix multiplication has a lower computational cost. These matrices can be represented by their short generators which allow faster computations based on the displacement operators tool. However, the length of the generators is tend to grow and the iterations do not preserve matrix structure. So, the main goal is to control the growth of the length of the short displacement generators so that we can operate with matrices of low rank and carry out the computations much faster. In order to achieve our goal, we will compress the computed approximations to the inverse to yield a superfast algorithm. We will describe two different compression techniques based on the SVD and substitution and we will analyze these approaches. Our main algorithm can be applied to more general classes of structured matrices.
文摘Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare these methods. We offer the correct syntax to deactivate the similarity algorithm for clustering analysis within the hierarchical clustering module of SPSS. Findings: When one inputs co-occurrence matrices into the data editor of the SPSS hierarchical clustering module without deactivating the embedded similarity algorithm, the program calculates similarity twice, and thus distorts and overestimates the degree of similarity. Practical implications: We offer the correct syntax to block the similarity algorithm for clustering analysis in the SPSS hierarchical clustering module in the case of co-occurrence matrices. This syntax enables researchers to avoid obtaining incorrect results. Originality/value: This paper presents a method of editing syntax to prevent the default use of a similarity algorithm for SPSS's hierarchical clustering module. This will help researchers, especially those from China, to properly implement the co-occurrence matrix when using SPSS for hierarchical cluster analysis, in order to provide more scientific and rational results.