A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman tr...A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal eurvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.展开更多
A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi...A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,展开更多
Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic me...Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide. In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.展开更多
文摘A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal eurvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.
基金supported by National Natural Science Foundation of China(60532010 and 60601007)by Specialized Research Fundfor the Doctoral Programof Higher Education(20070614041)
基金supported by National Natural Science Foundation of China under grant No.50978183
文摘A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,
文摘Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide. In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.