Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately u...Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud.However,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other requirements.Based on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion time.Meanwhile,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model solving.The algorithm uses opposition-based learning to generate initial populations for faster convergence.Furthermore,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range.By comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects.展开更多
In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo...In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.展开更多
The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals i...The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals in DA are selected based on the traditional Pareto dominance which decreases the selection pressure in the high-dimensional problems.The traditional algorithm even cannot converge due to the weak selection pressure.Meanwhile,Two_Arch2 adopts DA as the output of the algorithm which is hard to maintain diversity and coverage of the final solutions synchronously and increase the complexity of the algorithm.To increase the evolutionary pressure of the algorithm and improve distribution and convergence of the final solutions,an ε-domination based Two_Arch2 algorithm(ε-Two_Arch2) for many-objective problems(MaOPs) is proposed in this paper.In ε-Two_Arch2,to decrease the computational complexity and speed up the convergence,a novel evolutionary framework with a fast update strategy is proposed;to increase the selection pressure,ε-domination is assigned to update the individuals in DA;to guarantee the uniform distribution of the solution,a boundary protection strategy based on I_(ε+) indicator is designated as two steps selection strategies to update individuals in CA.To evaluate the performance of the proposed algorithm,a series of benchmark functions with different numbers of objectives is solved.The results demonstrate that the proposed method is competitive with the state-of-the-art multi-objective evolutionary algorithms and the efficiency of the algorithm is significantly improved compared with Two_Arch2.展开更多
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu...Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.展开更多
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence...It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive.展开更多
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays...As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.展开更多
This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coor...This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coordinate the benefits of all parties participated in the integrated energy system(IES). In order to solve the many-objective optimization model efficiently, an improved objective reduction(IOR) approach is proposed, aiming at acquiring the smallest set of objectives. The IOR approach utilizes the Spearman’s rank correlation coefficient to measure the relationship between objectives based on the Pareto-optimal front captured by the multi-objective group search optimizer with adaptive covariance and Lévy flights algorithm, and adopts various strategies to reduce the number of objectives gradually. Simulation studies are conducted on an IES consisting of a modified IEEE 30-bus electricity network and a 15-node gas network. The results show that the many-objective optimization problem is transformed into a bi-objective formulation by the IOR. Furthermore,our approach improves the overall quality of dispatch solutions and alleviates the decision making burden.展开更多
Large-scale cooling energy system has developed well in the past decade.However,its optimization is still a problem to be tackled due to the nonlinearity and large scale of existing systems.Reducing the scale of probl...Large-scale cooling energy system has developed well in the past decade.However,its optimization is still a problem to be tackled due to the nonlinearity and large scale of existing systems.Reducing the scale of problems without oversimplifying the actual system model is a big challenge nowadays.This paper proposes a dimension reduction-based many-objective optimization(DRMO)method to solve an accurate nonlinear model of a practical large-scale cooling energy system.In the first stage,many-objective and many-variable of the large system are pre-processed to reduce the overall scale of the optimization problem.The relationships between many objectives are analyzed to find a few representative objectives.Key control variables are extracted to reduce the dimension of variables and the number of equality constraints.In the second stage,the manyobjective group search optimization(GSO)method is used to solve the low-dimensional nonlinear model,and a Pareto-front is obtained.In the final stage,candidate solutions along the Paretofront are graded on many-objective levels of system operators.The candidate solution with the highest average utility value is selected as the best running mode.Simulations are carried out on a 619-node-614-branch cooling system,and results show the ability of the proposed method in solving large-scale system operation problems.展开更多
In this paper, a new preference multi-objective optimization algorithm called immune clone algorithm based on reference direction method (RD-ICA) is proposed for solving many-objective optimization problems. First, ...In this paper, a new preference multi-objective optimization algorithm called immune clone algorithm based on reference direction method (RD-ICA) is proposed for solving many-objective optimization problems. First, an intelligent recombination operator, which performs well on the functions comprising many parameters, is introduced into an immune clone algorithm so as to explore the potentially excellent gene segments of all individuals in the antibody pop- ulation. Second, a reference direction method, a very strict ranking based on the desire of decision makers (DMs), is used to guide selection and clone of the active population. Then a light beam search (LBS) is borrowed to pick out a small set of individuals filling the external population. The proposed method has been extensively compared with other recently proposed evolutionary multi-objective optimization (EMO) approaches over DTLZ problems with from 4 to 100 objectives. Experimental results indicate RD-ICA can achieve competitive results.展开更多
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex...With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.展开更多
Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems whe...Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced...Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector.展开更多
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje...To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.展开更多
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m...The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.展开更多
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ...Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation.展开更多
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta...Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.展开更多
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic...Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.展开更多
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f...Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61806138)the Central Government Guides Local Science and Technology Development Funds(Grant No.YDZJSX2021A038)+2 种基金Key RD Program of Shanxi Province(International Cooperation)under Grant No.201903D421048Outstanding Innovation Project for Graduate Students of Taiyuan University of Science and Technology(Project No.XCX211004)China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud.However,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other requirements.Based on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion time.Meanwhile,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model solving.The algorithm uses opposition-based learning to generate initial populations for faster convergence.Furthermore,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range.By comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects.
基金supported in part by the National Natural Science Foundation of China(51775385)the Natural Science Foundation of Shanghai(23ZR1466000)+3 种基金the Shanghai Industrial Collaborative Science and Technology Innovation Project(2021-cyxt2-kj10)the Innovation Program of Shanghai Municipal Education Commission(202101070007E00098)the Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology of MOE(1221046)the Program to Cultivate Middle-Aged and Young Cadre Teacher of Jiangsu Province。
文摘In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.
基金supported by the National Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province (52077203,LY19E070003)the Fundamental Research Funds for the Provincial Universities of Zhejiang (2021YW06)。
文摘The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals in DA are selected based on the traditional Pareto dominance which decreases the selection pressure in the high-dimensional problems.The traditional algorithm even cannot converge due to the weak selection pressure.Meanwhile,Two_Arch2 adopts DA as the output of the algorithm which is hard to maintain diversity and coverage of the final solutions synchronously and increase the complexity of the algorithm.To increase the evolutionary pressure of the algorithm and improve distribution and convergence of the final solutions,an ε-domination based Two_Arch2 algorithm(ε-Two_Arch2) for many-objective problems(MaOPs) is proposed in this paper.In ε-Two_Arch2,to decrease the computational complexity and speed up the convergence,a novel evolutionary framework with a fast update strategy is proposed;to increase the selection pressure,ε-domination is assigned to update the individuals in DA;to guarantee the uniform distribution of the solution,a boundary protection strategy based on I_(ε+) indicator is designated as two steps selection strategies to update individuals in CA.To evaluate the performance of the proposed algorithm,a series of benchmark functions with different numbers of objectives is solved.The results demonstrate that the proposed method is competitive with the state-of-the-art multi-objective evolutionary algorithms and the efficiency of the algorithm is significantly improved compared with Two_Arch2.
基金supported by the Shenzhen Innovation Technology Program(JCYJ20160422112909302)
文摘Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.
基金supported by the National Natural Science Foundation of China(Grant No.61976101)the University Natural Science Research Project of Anhui Province(Grant No.2023AH040056)+4 种基金the Natural Science Research Project of Anhui Province(Graduate Research Project,Grant No.YJS20210463)the Funding Plan for Scientic Research Activities of Academic and Technical Leaders and Reserve Candidates in Anhui Province(Grant No.2021H264)the Top Talent Project of Disciplines(Majors)in Colleges and Universities in Anhui Province(Grant No.gxbjZD2022021)the University Synergy Innovation Program of Anhui Province,China(GXXT-2022-033)supported by the Innovation Fund for Postgraduates of Huaibei Normal University(Grant Nos.cx2022041,yx2021023,CX2023043).
文摘It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive.
基金supported by Youth Talent Project of Scientific Research Program of Hubei Provincial Department of Education under Grant Q20241809Doctoral Scientific Research Foundation of Hubei University of Automotive Technology under Grant 202404.
文摘As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.
基金supported by the State Key Program of National Natural Science Foundation of China(No.51437006)Guangdong Innovative Research Team Program(No.201001N0104744201)
文摘This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coordinate the benefits of all parties participated in the integrated energy system(IES). In order to solve the many-objective optimization model efficiently, an improved objective reduction(IOR) approach is proposed, aiming at acquiring the smallest set of objectives. The IOR approach utilizes the Spearman’s rank correlation coefficient to measure the relationship between objectives based on the Pareto-optimal front captured by the multi-objective group search optimizer with adaptive covariance and Lévy flights algorithm, and adopts various strategies to reduce the number of objectives gradually. Simulation studies are conducted on an IES consisting of a modified IEEE 30-bus electricity network and a 15-node gas network. The results show that the many-objective optimization problem is transformed into a bi-objective formulation by the IOR. Furthermore,our approach improves the overall quality of dispatch solutions and alleviates the decision making burden.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B010166004)Natural Science Foundation of China(52007066).
文摘Large-scale cooling energy system has developed well in the past decade.However,its optimization is still a problem to be tackled due to the nonlinearity and large scale of existing systems.Reducing the scale of problems without oversimplifying the actual system model is a big challenge nowadays.This paper proposes a dimension reduction-based many-objective optimization(DRMO)method to solve an accurate nonlinear model of a practical large-scale cooling energy system.In the first stage,many-objective and many-variable of the large system are pre-processed to reduce the overall scale of the optimization problem.The relationships between many objectives are analyzed to find a few representative objectives.Key control variables are extracted to reduce the dimension of variables and the number of equality constraints.In the second stage,the manyobjective group search optimization(GSO)method is used to solve the low-dimensional nonlinear model,and a Pareto-front is obtained.In the final stage,candidate solutions along the Paretofront are graded on many-objective levels of system operators.The candidate solution with the highest average utility value is selected as the best running mode.Simulations are carried out on a 619-node-614-branch cooling system,and results show the ability of the proposed method in solving large-scale system operation problems.
基金The authors would like to thank the editor and the reviewers for helpful comments that greatly improved the paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 613731 l 1, 61272279, 61003199 and 61203303) the Fundamental Re- search Funds for the Central Universities (K50511020014, K5051302084, K50510020011, K5051302049 and K5051302023)+1 种基金 the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (B07048) and the Program for New Century Excellent Talents in University (NCET- 12-0920).
文摘In this paper, a new preference multi-objective optimization algorithm called immune clone algorithm based on reference direction method (RD-ICA) is proposed for solving many-objective optimization problems. First, an intelligent recombination operator, which performs well on the functions comprising many parameters, is introduced into an immune clone algorithm so as to explore the potentially excellent gene segments of all individuals in the antibody pop- ulation. Second, a reference direction method, a very strict ranking based on the desire of decision makers (DMs), is used to guide selection and clone of the active population. Then a light beam search (LBS) is borrowed to pick out a small set of individuals filling the external population. The proposed method has been extensively compared with other recently proposed evolutionary multi-objective optimization (EMO) approaches over DTLZ problems with from 4 to 100 objectives. Experimental results indicate RD-ICA can achieve competitive results.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFC1604000)the National Natural Science Foundation of China(Nos.61806138,61772478,U1636220,61961160707,and 61976212)+2 种基金the Key R&D Program of Shanxi Province(High Technology)(No.201903D121119)the Key R&D Program of Shanxi Province(International Cooperation)(No.201903D421048)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province,China(No.201903D421003).
文摘With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.
基金supported in part by the National Natural Science Foundation of China(No.62172110)the Natural Science Foundation of Guangdong Province(Nos.2021A1515011839 and 2022A1515010130)the Programme of Science and Technology of Guangdong Province(No.2021A0505110004).
文摘Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金supported by the Hundred-person Program of Chinese Academy of Sciences and the National Natural Science Foundation of China(No.11905074).
文摘Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector.
基金Supported by State Grid Corporation of China Science and Technology Project:Research on Key Technologies for Intelligent Carbon Metrology in Vehicle-to-Grid Interaction(Project Number:B3018524000Q).
文摘To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.
基金supported by the Science and Technology Research Project of Henan Province(242102241055)the Industry-University-Research Collaborative Innovation Base on Automobile Lightweight of“Science and Technology Innovation in Central Plains”(2024KCZY315)the Opening Fund of State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment(GZ2024A03-ZZU).
文摘The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.
基金supported by the National Key Research and Development Program of China(2023YFF0906502)the Postgraduate Research and Innovation Project of Hunan Province under Grant(CX20240473).
文摘Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation.
基金funded by National Natural Science Foundation of China(Nos.12402142,11832013 and 11572134)Natural Science Foundation of Hubei Province(No.2024AFB235)+1 种基金Hubei Provincial Department of Education Science and Technology Research Project(No.Q20221714)the Opening Foundation of Hubei Key Laboratory of Digital Textile Equipment(Nos.DTL2023019 and DTL2022012).
文摘Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-01264).
文摘Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.
基金National Natural Science Foundation of China,No.42301470,No.52270185,No.42171389Capacity Building Program of Local Colleges and Universities in Shanghai,No.21010503300。
文摘Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers.