Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forest...Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.展开更多
Background: Continuous Cover Forestry(CCF) is a type of forest management that is based on ecological, environmental, and biological principles. Specific definitions of CCF greatly vary and the concept usually include...Background: Continuous Cover Forestry(CCF) is a type of forest management that is based on ecological, environmental, and biological principles. Specific definitions of CCF greatly vary and the concept usually includes a number of tenets or criteria. The most important tenet of CCF is the requirement to abandon the practice of largescale clearfelling in favour of selective thinning/harvesting and natural regeneration methods.Methods: CCF is commonly believed to have its main origin in an academic debate that was conducted through publications in a number of European and North American countries towards the end of the 19th and the beginning of the 20th century. Our findings are exclusively based on a literature review of the history of CCF and they revealed that the European origins of CCF go much further back to a form of farm forestry that started to be practised in Central Europe in the 17th century. Eventually, this type of farm forestry led to the formation of the single-tree selection system as we know it today. Another influential tradition line contributing to modern CCF is individual-based forest management, which breaks forest stands down into small neighbourhood-based units. The centres of these units are dominant frame trees which form the framework of a forest stand. Consequently, management is only carried out in the local neighbourhood of frame trees. Individual-based forest management also modified inflexible area-control approaches of plantation forest management in favour of the flexible sizecontrol method.Results and conclusions: We found evidence that the three aforementioned tradition lines are equally important and much interacted in shaping modern CCF. Since CCF is an international accomplishment, it is helpful to thoroughly study the drivers and causes of such concepts. Understanding the gradual evolution can give valuable clues for the introduction and adaptation of CCF in countries where the concept is new.展开更多
Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon s...Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon sequestration capabilities.Meanwhile,climate change has also become a major factor affecting the sustainable management of forest ecosystems.Climate-Smart Forestry(CSF)is an emerging concept in sustainable forest management.By utilizing advanced technologies,such as information technology and artificial intelligence,CSF aims to develop innovative and proactive forest management methods and decision-making systems to address the challenges of climate change.CSF aims to enhance forest ecosystem resilience(i.e.,maintain a condition where,even when the state of the ecosystem changes,the ecosystem functions do not deteriorate)through climate change adaptation,improve the mitigation capabilities of forest ecosystems to climate change,maintain high,stable,and sustainable forest productivity and ecosystem services,and ultimately achieve harmonious development between humans and nature.This concept paper:(1)discusses the emergence and development of CSF,which integrates Ecological Forestry,Carbon Forestry,and Smart Forestry,and proposes the concept of CSF;(2)analyzes the goals of CSF in improving forest ecosystem stability,enhancing forest ecosystem carbon sequestration capacity,and advocating the application and development of new technologies in CSF,including artificial intelligence,robotics,Light Detection and Ranging,and forest digital twin;(3)presents the latest practices of CSF based on prior research on forest structure and function using new generation information technologies at Qingyuan Forest,China.From these practices and reflections,we suggested the development direction of CSF,including the key research topics and technological advancement.展开更多
Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate...Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change.展开更多
1.In recent years,climate change has led to drought and severe bark beetle infestations,affecting Norway spruce(Picea abies)across Europe,with detrimental consequences for forest owners,the forestry sector and associa...1.In recent years,climate change has led to drought and severe bark beetle infestations,affecting Norway spruce(Picea abies)across Europe,with detrimental consequences for forest owners,the forestry sector and associated industries.As a result,silviculture now faces the challenge of identifying tree species more resilient to these stressors to mitigate the impacts on forest management,forest-dependent economies and rural livelihoods.The North American Douglas-fir(Pseudotsuga menziesii)has emerged as a promising conifer species,better suited to future climate conditions and capable of producing high timber yields.2.Non-native tree species may affect native biodiversity,yet the impacts of Douglas-fir on native forest biodiversity are not clear.A comprehensive review evaluating the impact of Douglas-fir on faunal and floral biodiversity in European forests is lacking.3.Here,we present the results of a systematic literature review on Douglas-fir effects on native biodiversity,focusing on studies conducted in Europe.For arthropods,sufficient studies were found to do more detailed quantitative assessments.For fungi,birds,plants and soil fauna some studies existed,but only qualitative evaluations could be made.Other taxa were not investigated.4.In the present literature,the effects of Douglas-fir inclusion in stands on native biodiversity,compared to stands of solely native tree species,were mostly non-significant(78.6%,based on 32 studies).Positive effects were noted in 12%of cases,while negative effects were observed in 9.4%(total of 1,936 effects).Above-ground fauna was more extensively studied than below-ground fauna.Mechanisms proposed to explain taxa responses were often discussed but not always formally tested.For arthropods,there were varying effects on diversity between studies evaluating different scales(i.e.,tree-scale vs.stand-scale).In general,differences in effects depended on a range of factors,including stand composition and structure,season,and sampling site and period.5.Our review indicates limited evidence of adverse effects of Douglas-fir on biodiversity in European forests,highlighting a significant knowledge gap due to the scarcity of studies.Douglas-fir's impact on biodiversity likely varies depending on the forest type and management practices.Further research in diverse contexts is crucial to determine optimal levels of admixture and guide forest management.展开更多
Neighborhood competition is a critical driver of individual tree growth,and aboveground biomass(AGB)accumulation,which together play key roles in forest dynamics and carbon storage.Therefore,accurate biomass estimatio...Neighborhood competition is a critical driver of individual tree growth,and aboveground biomass(AGB)accumulation,which together play key roles in forest dynamics and carbon storage.Therefore,accurate biomass estimation is essential for understanding ecosystem functioning and informing forest management strategies to mitigate climate change.However,integrating neighborhood competition into biomass estimation models,particularly for young mixed forest stands,remains unexplored.In this study,we examined how incorporating neighborhood competition improves biomass prediction accuracy and how the influence of neighborhood competition differs between Scots pine(Pinus sylvestris L.)and Pyrenean oak(Quercus pyrenaica Willd.),as well as the relative contributions of intra-and interspecific competition to AGB.Our findings revealed that including neighborhood competition alongside tree size variables(DBH and total tree height)significantly improved the predictive accuracy of AGB models for Scots pine.This addition reduced the root mean square error(RMSE)by 14% and improved the model efficiency factor(MEF)by 15%.Furthermore,intraspecific competition in Scots pine slightly reduced AGB,whereas interspecific competition had a significant negative effect on AGB.In contrast,DBH alone was the best predictor of AGB for Pyrenean oak,as neighborhood competition did not improve model performance.Also,intra-and interspecific competition in Pyrenean oak had positive but nonsignificant effects on AGB.These findings highlight the important role of competition in biomass models and suggest species-specific approaches in competition dynamics to inform sustainable forest management and climate change adaptation strategies.展开更多
Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Clim...Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Climate Change,”compiles 41 interdisciplinary studies exploring forest-climate interactions through dendrochro-nological and ecological approaches.It addresses climate reconstruction(e.g.,temperature,precipitation,isotopes)using tree-ring proxies,species-specific and age-dependent growth responses to warming and drought,anatomical adap-tations,and methodological innovations in isotope analysis and multi-proxy integration.Key findings reveal ENSO/AMO modulation of historical climates,elevation-and latitude-driven variability in tree resilience,contrasting carbon dynamics under stress,and projected habitat shifts for vulnerable species.The issue underscores forests’dual role as climate archives and carbon regulators,offering insights for adaptive management and nature-based climate solutions.Contributions bridge micro-scale physiological processes to macro-scale ecological modeling,advancing sustainable strategies amid global environmental challenges.展开更多
In this paper,different stands in Dongjiang Lake Reservoir area of Zixing were selected as the research objects,and the runoff generation and soil loss characteristics of different stands were studied.The results show...In this paper,different stands in Dongjiang Lake Reservoir area of Zixing were selected as the research objects,and the runoff generation and soil loss characteristics of different stands were studied.The results showed that the annual surface runoff of each model in Zixing was between 43.24 and 50.99 mm,and there was no significant difference in the annual runoff between each stand and its control.There were significant differences in soil erosion modulus among the models,and the number ranged from 127.37 to 165.58 t/(km 2·y).展开更多
Leaf area index(LAI)is a key measure of forest stand physiology and biomass production,and is essential within ecosystem modeling.There are two common approaches to obtaining LAI:(i)terrestrial forest inventory-based...Leaf area index(LAI)is a key measure of forest stand physiology and biomass production,and is essential within ecosystem modeling.There are two common approaches to obtaining LAI:(i)terrestrial forest inventory-based“bottom-up”,and(ii)satellite-based“top-down”techniques.The purpose of this study is to compare terrestrial LAI from allometric functions applied to more than 30,000 trees of the Austrian National Forest Inventory(NFI)vs.satellite-based LAI estimates obtained from moderate resolution imaging spectroradiometer(MODIS)and Sentinel(Sentinel-3 TOC reflectance and PROBA-V)data across Austrian forests.We analyzed a satellite pixelto-plot aggregation and obtained the full inventory data set for the LAI comparison.The results suggest that terrestrial vs.satellite(MODIS and Sentinel)driven LAI estimates are consistent,but(i)the variation of the terrestrial forest inventory LAI is larger vs.the pixel average LAI from satellite data,and(ii)any satellite LAI estimation needs a forest stand density correction if the crown competition factor(CCF),a measure for stand density,is<250 to avoid an overestimation in LAI.展开更多
The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European b...The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.展开更多
Collaborative forest management (CFM) is a form of forest governance in which local communities are involved in the management and decision-making processes related to forest resources. It is believed that forests und...Collaborative forest management (CFM) is a form of forest governance in which local communities are involved in the management and decision-making processes related to forest resources. It is believed that forests under such management are better in tree diversity and conservation status and thus hold more carbon stocks. The study assessed the impact of CFM on carbon stocks, tree species diversity & tree species density in Mabira Central Forest Reserve. Data were collected from plots that were systematically laid in the different purposively selected forest areas. The study findings show that there is no difference in stem density and carbon stocks between CFM and non-CFM areas. CFM areas had lower species richness compared to non-CFM areas. CFM areas, however, exhibited more species diversity than non-CFM areas. Climax colonization may favor a few dominant species over others, hence lowering species diversity despite the number of species being many in the understory, hence at the same time increasing species richness. Likewise, disturbance in CFM area may affect natural colonization and favor the emergency of many species either naturally or through assisted regeneration by reforestation, hence increasing diversity, whereas artificial selection of preferred species through harvesting may lower species richness, as observed. Recommendations for improving collaborative forest management (CFM) areas include implementing targeted interventions to enhance carbon sequestration, such as promoting reforestation and afforestation with high-carbon-storing species and strengthening monitoring and evaluation frameworks to assess carbon stock changes over time. Additionally, efforts should focus on enhancing biodiversity conservation by implementing more stringent protection measures and reducing human disturbance while encouraging community participation in biodiversity monitoring and conservation education.展开更多
Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these ...Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.展开更多
This study, which took place around the Boumba-Bek National Park (BBNP) in Cameroon, was based on identifying and characterizing stakeholders in forest resources management, as well as determining the relationships be...This study, which took place around the Boumba-Bek National Park (BBNP) in Cameroon, was based on identifying and characterizing stakeholders in forest resources management, as well as determining the relationships between them, with the goal of encouraging collaborative forest resources management. Purposive sampling was adopted, in which focus group discussions, key informant interviews, semi-structured interviews, and snowball sampling were used for data collection. Focus group discussions were conducted with a total of 20 local associations involved in forest and wildlife management, Bantu traditional councils and the Baka community. Key informant interviews were conducted with local and international NGOs, forest exploitation and Sport hunting (Safari) enterprises and local public administrations that had working rapports with village communities around the BBNP. Information was generally sought on the role of stakeholders in forest management, in terms of use, protection, policy enforcement, challenges encountered in their activities and their relationships with other stakeholders. Actor linkage matrix was used to establish the relationships between different stakeholders. The identified stakeholder groups included the local community, State, international and local NGOs, economic operators (forest exploitation and sport hunting enterprises), and also the rules guiding their activities. Conflicts were rife between the community and the other stakeholders with regard to resource accessibility and use, whereas intra-community conflicts mostly resulted from cases of corruption and embezzlement linked to benefits sharing. Cases of collaboration among all the stakeholders were mostly related to anti-poaching patrols and setting of forest concession limits. There is a need to bring all stakeholders on the same platform, such as in a consultation workshop, to get their perceptions on building trust, conflict resolution and genuine collaboration in resources management.展开更多
Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine compet...Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine competition indices(CIs) for their suitability to model the effects of neighboring trees on silver fir(Abies alba) growth in Dinaric silver fir-European beech(Fagus sylvatica) forests. Although numerous competition indices have been developed, there is still limited consensus on their applicability in different forest types, especially in mature, structurally complex forest stands. The indices were evaluated using the adjusted coefficient of determination in a linear model wherein the volume growth of the last five years for 60 dominant silver fir trees was modeled as a function of tree volume and competition index. The results demonstrated that distance-dependent indices(e.g., the Hegyi height-distance competition and Rouvinen-Kuuluvainen diameter-distance competition indices), which consider the distance to competitors and their size, perform better than distance-independent indices. Using the optimization procedure in calculating the competition indices, only neighboring trees at a distance of up to 26-fold the diameter at breast height(DBH) of the selected tree(optimal search radius) and with a DBH of at least 20% of that of the target tree(optimal DBH) were considered competitors. Therefore, competition significantly influences the growth of dominant silver firs even in older age classes. The model based solely on tree volume explained 32.5% of the variability in volume growth, while the model that accounted for competition explained 64%. Optimizing the optimal search radius had a greater impact on model performance than optimizing the DBH threshold. This emphasizes the importance of balancing stand density and competition in silvicultural practice.展开更多
We compared the dead wood (DW) conditions of Chesh- meh-sar forest and Sardab forest with different management history, including reserve forest and harvested forest. The First forest took 100% inventory from all th...We compared the dead wood (DW) conditions of Chesh- meh-sar forest and Sardab forest with different management history, including reserve forest and harvested forest. The First forest took 100% inventory from all the available DW. Also dead trees were compared in terms of species, shape, location and quality of fracture in both forests. Volumes of dead wood in Cheshmeh-sar and Sardab forests were 207.47 and 142.74 m3, respectively. Due to this significant difference, impact on the management level was determined. In Cheshmeh-sar forest, 42% of dead trees were standing and 58% were fallen type while in Sardab forest 38.6% were standing and 61.4% fallen. But the difference was not statis- tically significant l^etween them (p = 0.0587). In terms of quality, dead trees of hard, soft and hollow had the highest frequency, respectively. However, 71.5% of DW was seen as hard dead in Cheshmeh-sar forest while hard dead trees in Sardab forests were 54.2%. Soft quality degree of dead trees which formed in Cheshmeh-sar and Sardab forest were calcu- lated as 26.6% and 43.4% respectively. Also 30% of the dead trees of Sardab forest were eradicated while in Cheshmeh-sar this amount was reduced to 12%. Due to this significant difference ((P=0/018), it is concluded that the type of management and human interference are affecting the quality of dead trees and makes us to think the human in- terferences could effect on the ecosystem of touched forests.展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China,but the high tree mortality of new afforestation forest remains a challenging but unsolved probl...Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China,but the high tree mortality of new afforestation forest remains a challenging but unsolved problem.It is still not clear how much vegetation can be sustained by the forest lands with given water,energy and soil conditions,i.e.,the carrying capacity for vegetation(CCV)of forest lands,which is the prerequisite for planning and implementing forest restoration projects.Here,we used a simplified method to evaluate the CCV across forest lands nationwide.Specifically,based on leaf area index(LAI)dataset,we use boosted regression tree and multiple linear regression model to analyze the CCV during 2001-2020 and 2021-2030 and explore the contribution of environmental factors.We find that there are three typical regions with lower CCV located in the Loess Plateau and the southern region of the Inner Mongolia Plateau,the Hengduan Mountain region,and the Tianshan Mountains.More importantly,the vegetation in the regions near the dry-wet climate transition zone show excess local carrying capacity for vegetation over the past two decades and they are more susceptible to potential climatic stress.In comparison,in the Greater Khingan Mountains and Hengduan Mountains,there is high potential to improve the forest growth.Temperature,precipitation and soil affects the CCV by shaping the vegetation in the optimal range.This indicates that more consideration should be given to restrictions of regional environmental constraints when planning afforestation and forest management.This study has important implications for guiding future forest scheme in China.展开更多
This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation...This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation in forest management through membership of Community Forest Association (CFA) or not. Cross-sectional survey research design was applied for collecting quantitative data using a semi-structured questionnaire administered to 384 households stratified on the basis of PFM participation status. Qualitative data was collected through focused group discussions using a checklist and key informant interviews using an interview schedule. Using Statistical Package for Social Sciences version 25, Binomial regression with Wald Chi-square was analyzed to identify factors perceived to be significantly influencing benefits for PFM participants and Pearson Chi-square to compare factors perceived to be affecting PFM and non-PFM participants. CFA members participation in PFM was significantly and positively affected by benefits of PFM income generating activities and forest products accessed in the forest. Benefits linked to Plantation Establishment for Livelihood Improvement System (PELIS) for CFA members were significantly reduced by enforcement of moratorium policy since February 2018, diseases and pests, poor PELIS guideline adherence and animal damage. Benefits related to state forest access for firewood by the CFA members were negatively influenced by the moratorium policy. Diseases and pests affected benefits associated with bee keeping significantly. Comparing factors under different PFM participation status, crop production was significantly affected by policy changes, pest and diseases, animal damage and PELIS guideline adherence for CFA members than for Non-CFA members. Policy changes also affected the CFA members significantly in firewood collection and access to fodder in the state forest than the Non-CFA members. Hence, sustainable community participation in Upper Imenti Forest management requires: increasing PFM benefits, addressing factors reducing benefits and enhancing active participation of CFA members in PFM related decision-making processes.展开更多
This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solu...This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solution were discussed based on the present situation of forestry in Jilin Province. The author also made prospects for future application of bio-technique, infor-mation technology, new material technology and nuisance-free forest health technology in forest ecological network.展开更多
基金funded through the project‘Bio Holz’(grant no.01LC1323A)in the funding program‘Research for the Implementation of the National Biodiversity Strategy(F&U NBS)’by the German Federal Ministry for Education and Research(BMBF)and the German Federal Agency for Nature Conservation(Bf N)with funds provided by the German Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety(BMUB)supported by the DFG Priority Program 1374‘Infrastructure-Biodiversity-Exploratories’。
文摘Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.
基金supported by the Swedish Government Research Council for Sustainable Development(Formas)grant#2023-00994.
文摘Background: Continuous Cover Forestry(CCF) is a type of forest management that is based on ecological, environmental, and biological principles. Specific definitions of CCF greatly vary and the concept usually includes a number of tenets or criteria. The most important tenet of CCF is the requirement to abandon the practice of largescale clearfelling in favour of selective thinning/harvesting and natural regeneration methods.Methods: CCF is commonly believed to have its main origin in an academic debate that was conducted through publications in a number of European and North American countries towards the end of the 19th and the beginning of the 20th century. Our findings are exclusively based on a literature review of the history of CCF and they revealed that the European origins of CCF go much further back to a form of farm forestry that started to be practised in Central Europe in the 17th century. Eventually, this type of farm forestry led to the formation of the single-tree selection system as we know it today. Another influential tradition line contributing to modern CCF is individual-based forest management, which breaks forest stands down into small neighbourhood-based units. The centres of these units are dominant frame trees which form the framework of a forest stand. Consequently, management is only carried out in the local neighbourhood of frame trees. Individual-based forest management also modified inflexible area-control approaches of plantation forest management in favour of the flexible sizecontrol method.Results and conclusions: We found evidence that the three aforementioned tradition lines are equally important and much interacted in shaping modern CCF. Since CCF is an international accomplishment, it is helpful to thoroughly study the drivers and causes of such concepts. Understanding the gradual evolution can give valuable clues for the introduction and adaptation of CCF in countries where the concept is new.
基金financially supported by the National Natural Science Foundation of China(32192435)the Application and Demonstration Project of Network Security and Informatization Technology,Chinese Academy of Sciences(CAS-WX2022SF-0101)+1 种基金the Liaoning Provincial Key Research and Development Program(2023021230-JH2/1018)the Youth Innovation Promotion Association of CAS(2023205).
文摘Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon sequestration capabilities.Meanwhile,climate change has also become a major factor affecting the sustainable management of forest ecosystems.Climate-Smart Forestry(CSF)is an emerging concept in sustainable forest management.By utilizing advanced technologies,such as information technology and artificial intelligence,CSF aims to develop innovative and proactive forest management methods and decision-making systems to address the challenges of climate change.CSF aims to enhance forest ecosystem resilience(i.e.,maintain a condition where,even when the state of the ecosystem changes,the ecosystem functions do not deteriorate)through climate change adaptation,improve the mitigation capabilities of forest ecosystems to climate change,maintain high,stable,and sustainable forest productivity and ecosystem services,and ultimately achieve harmonious development between humans and nature.This concept paper:(1)discusses the emergence and development of CSF,which integrates Ecological Forestry,Carbon Forestry,and Smart Forestry,and proposes the concept of CSF;(2)analyzes the goals of CSF in improving forest ecosystem stability,enhancing forest ecosystem carbon sequestration capacity,and advocating the application and development of new technologies in CSF,including artificial intelligence,robotics,Light Detection and Ranging,and forest digital twin;(3)presents the latest practices of CSF based on prior research on forest structure and function using new generation information technologies at Qingyuan Forest,China.From these practices and reflections,we suggested the development direction of CSF,including the key research topics and technological advancement.
基金part of the project“Areas of Forest Innovation Climate Smart Forestry”(project nr.101726),WP Modelling Plenter Forest vs.Even-aged Forest,funded by the Austrian Ministry of Agriculture,Forestry,Regions and Water Managementfunded by the province of Styria(Austria),the Austrian Federal Ministry of Agriculture,Forestry,Regions and Water Management and the European Union via the projects“Waldtypisierung Steiermark-FORSITE”(LE14-20)and“FORSITEⅡ-Investigation of the ecological base line information for a dynamic forest site classification in Upper Austria,Lower Austria and Burgenland”(101746)financial support came from BOKU University。
文摘Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change.
基金supported by grant klifW018 of the Bavarian State Ministry for Food,Agriculture and Forestry for funding.
文摘1.In recent years,climate change has led to drought and severe bark beetle infestations,affecting Norway spruce(Picea abies)across Europe,with detrimental consequences for forest owners,the forestry sector and associated industries.As a result,silviculture now faces the challenge of identifying tree species more resilient to these stressors to mitigate the impacts on forest management,forest-dependent economies and rural livelihoods.The North American Douglas-fir(Pseudotsuga menziesii)has emerged as a promising conifer species,better suited to future climate conditions and capable of producing high timber yields.2.Non-native tree species may affect native biodiversity,yet the impacts of Douglas-fir on native forest biodiversity are not clear.A comprehensive review evaluating the impact of Douglas-fir on faunal and floral biodiversity in European forests is lacking.3.Here,we present the results of a systematic literature review on Douglas-fir effects on native biodiversity,focusing on studies conducted in Europe.For arthropods,sufficient studies were found to do more detailed quantitative assessments.For fungi,birds,plants and soil fauna some studies existed,but only qualitative evaluations could be made.Other taxa were not investigated.4.In the present literature,the effects of Douglas-fir inclusion in stands on native biodiversity,compared to stands of solely native tree species,were mostly non-significant(78.6%,based on 32 studies).Positive effects were noted in 12%of cases,while negative effects were observed in 9.4%(total of 1,936 effects).Above-ground fauna was more extensively studied than below-ground fauna.Mechanisms proposed to explain taxa responses were often discussed but not always formally tested.For arthropods,there were varying effects on diversity between studies evaluating different scales(i.e.,tree-scale vs.stand-scale).In general,differences in effects depended on a range of factors,including stand composition and structure,season,and sampling site and period.5.Our review indicates limited evidence of adverse effects of Douglas-fir on biodiversity in European forests,highlighting a significant knowledge gap due to the scarcity of studies.Douglas-fir's impact on biodiversity likely varies depending on the forest type and management practices.Further research in diverse contexts is crucial to determine optimal levels of admixture and guide forest management.
基金the 2019 call for the predoctoral contract at the University of Valladolid cofinanced by Banco de Santander and projects‘CLU-2019-01-Unidad de Excelencia Instituto iuFOR’,‘PID2021-126275OB-C21’and‘PID2021-126275OB-C22’-Integrated Forest Management along complexity gradients(IMFLEX)‘MCIN/AEI/10.13039/501100011033/FEDER,UE’,which received financial support from the Regional Government of Castilla and León,Spainthe European Regional Development Fund(ERDF).
文摘Neighborhood competition is a critical driver of individual tree growth,and aboveground biomass(AGB)accumulation,which together play key roles in forest dynamics and carbon storage.Therefore,accurate biomass estimation is essential for understanding ecosystem functioning and informing forest management strategies to mitigate climate change.However,integrating neighborhood competition into biomass estimation models,particularly for young mixed forest stands,remains unexplored.In this study,we examined how incorporating neighborhood competition improves biomass prediction accuracy and how the influence of neighborhood competition differs between Scots pine(Pinus sylvestris L.)and Pyrenean oak(Quercus pyrenaica Willd.),as well as the relative contributions of intra-and interspecific competition to AGB.Our findings revealed that including neighborhood competition alongside tree size variables(DBH and total tree height)significantly improved the predictive accuracy of AGB models for Scots pine.This addition reduced the root mean square error(RMSE)by 14% and improved the model efficiency factor(MEF)by 15%.Furthermore,intraspecific competition in Scots pine slightly reduced AGB,whereas interspecific competition had a significant negative effect on AGB.In contrast,DBH alone was the best predictor of AGB for Pyrenean oak,as neighborhood competition did not improve model performance.Also,intra-and interspecific competition in Pyrenean oak had positive but nonsignificant effects on AGB.These findings highlight the important role of competition in biomass models and suggest species-specific approaches in competition dynamics to inform sustainable forest management and climate change adaptation strategies.
基金supported by the Outstanding Action Plan of Chinese Sci-tech Journals(Grant No.OAP-C-077).
文摘Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Climate Change,”compiles 41 interdisciplinary studies exploring forest-climate interactions through dendrochro-nological and ecological approaches.It addresses climate reconstruction(e.g.,temperature,precipitation,isotopes)using tree-ring proxies,species-specific and age-dependent growth responses to warming and drought,anatomical adap-tations,and methodological innovations in isotope analysis and multi-proxy integration.Key findings reveal ENSO/AMO modulation of historical climates,elevation-and latitude-driven variability in tree resilience,contrasting carbon dynamics under stress,and projected habitat shifts for vulnerable species.The issue underscores forests’dual role as climate archives and carbon regulators,offering insights for adaptive management and nature-based climate solutions.Contributions bridge micro-scale physiological processes to macro-scale ecological modeling,advancing sustainable strategies amid global environmental challenges.
基金Supported by Science and Technology Plan of Hunan Province(2021SFQ19)Hunan Forestry Science and Technology Plan(OT-S-KTA5,2024YBC15).
文摘In this paper,different stands in Dongjiang Lake Reservoir area of Zixing were selected as the research objects,and the runoff generation and soil loss characteristics of different stands were studied.The results showed that the annual surface runoff of each model in Zixing was between 43.24 and 50.99 mm,and there was no significant difference in the annual runoff between each stand and its control.There were significant differences in soil erosion modulus among the models,and the number ranged from 127.37 to 165.58 t/(km 2·y).
基金part of the Areas of Forest Innovation Climate Smart Forestry(Project No.101726),Work Package Modeling,funded by the Austrian Ministry of Agriculture,Forestry,Regions,and Water Management.
文摘Leaf area index(LAI)is a key measure of forest stand physiology and biomass production,and is essential within ecosystem modeling.There are two common approaches to obtaining LAI:(i)terrestrial forest inventory-based“bottom-up”,and(ii)satellite-based“top-down”techniques.The purpose of this study is to compare terrestrial LAI from allometric functions applied to more than 30,000 trees of the Austrian National Forest Inventory(NFI)vs.satellite-based LAI estimates obtained from moderate resolution imaging spectroradiometer(MODIS)and Sentinel(Sentinel-3 TOC reflectance and PROBA-V)data across Austrian forests.We analyzed a satellite pixelto-plot aggregation and obtained the full inventory data set for the LAI comparison.The results suggest that terrestrial vs.satellite(MODIS and Sentinel)driven LAI estimates are consistent,but(i)the variation of the terrestrial forest inventory LAI is larger vs.the pixel average LAI from satellite data,and(ii)any satellite LAI estimation needs a forest stand density correction if the crown competition factor(CCF),a measure for stand density,is<250 to avoid an overestimation in LAI.
基金the Institute Research Centre for Ecological and Forestry Applications (CREAF) of Barcelona that supported the research by the Spanish “Ministerio de Ciencia e Innovacio'n”(MCIN/AEI/ 10.13039/501100011033) (grant agreement No. PID 2021-126679OBI00)partially supported by MIUR Project (PRIN 2020) between WATER and carbon cycles during droug“Unraveling interactionsht and their impact on water resources and forest and grassland ecosySTEMs in the Mediterranean climate (WATERSTEM)”(Project number: 20202WF53Z),“WAFER”at CNR (Consiglio Nazionale delle Ricerche)+3 种基金Priwitzer et al. (2014) (cod. 2020E52THS)-Research Projects of National Relevance funded by the Italian Ministry of University and Research entitled: “Multi-scale observations to predict Forest response to pollution and climate change”(MULTIFOR, project number: 2020E52THS)funding by the project OptForEU Horizon Europe research and innovation programme under grant agreement No. 101060554the project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4-Call for tender No. 3138 of December 16, 2021, rectified by Decree n.3175 of December 18, 2021 of Italian Ministry of UniversityResearch funded by the European UnionationEU under award Number: Project code CN_00000033–Next Gener, Concession Decree No. 1034 of June 17, 2022 adopted by the Italian Ministry of University and Research, CUP B83C22002930006, Project title“National Biodiversity Future Centre-NBFC”
文摘The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.
文摘Collaborative forest management (CFM) is a form of forest governance in which local communities are involved in the management and decision-making processes related to forest resources. It is believed that forests under such management are better in tree diversity and conservation status and thus hold more carbon stocks. The study assessed the impact of CFM on carbon stocks, tree species diversity & tree species density in Mabira Central Forest Reserve. Data were collected from plots that were systematically laid in the different purposively selected forest areas. The study findings show that there is no difference in stem density and carbon stocks between CFM and non-CFM areas. CFM areas had lower species richness compared to non-CFM areas. CFM areas, however, exhibited more species diversity than non-CFM areas. Climax colonization may favor a few dominant species over others, hence lowering species diversity despite the number of species being many in the understory, hence at the same time increasing species richness. Likewise, disturbance in CFM area may affect natural colonization and favor the emergency of many species either naturally or through assisted regeneration by reforestation, hence increasing diversity, whereas artificial selection of preferred species through harvesting may lower species richness, as observed. Recommendations for improving collaborative forest management (CFM) areas include implementing targeted interventions to enhance carbon sequestration, such as promoting reforestation and afforestation with high-carbon-storing species and strengthening monitoring and evaluation frameworks to assess carbon stock changes over time. Additionally, efforts should focus on enhancing biodiversity conservation by implementing more stringent protection measures and reducing human disturbance while encouraging community participation in biodiversity monitoring and conservation education.
基金supported by the Forest Research Centre,a research unit funded by Fundacao para a Ciencia e a Tecnologia I.P.(FCT),Portugal(UIDB/00239/2020)the Associated Laboratory TERRA(LA/P/0092/2020)+4 种基金Additional funding was provided through the Ph.D.grant awarded to Dagm Abate(UI/BD/151525/2021)by two key projects:H2020-MSCA-RISE-2020/101007950,titled“DecisionES-Decision Support for the Supply of Ecosystem Services under Global Change,”funded by the Marie Curie International Staff Exchange Scheme,H2020-LCGD-2020-3/101037419,titled“FIRE-RES-Innovative technologies and socio-ecological economic solutions for fireresilient territories in Europe,”funded by the EU Horizon 2020—Research and Innovation Framework Programmesupported by a project MODFIRE—a multiple criteria approach to integrate wildfire behavior in forest management planning with reference PCIF/MOS/0217/2017a contract from Dr.Susete Marques in the scope of Norma Transitoria—DL57/2016/CP1382/CT15a grant from Fundacao para a Ciencia e a Tecnologia(FCT),Portugal to Dr.Guerra-Hernandez(CEECIND/02576/2022).
文摘Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.
文摘This study, which took place around the Boumba-Bek National Park (BBNP) in Cameroon, was based on identifying and characterizing stakeholders in forest resources management, as well as determining the relationships between them, with the goal of encouraging collaborative forest resources management. Purposive sampling was adopted, in which focus group discussions, key informant interviews, semi-structured interviews, and snowball sampling were used for data collection. Focus group discussions were conducted with a total of 20 local associations involved in forest and wildlife management, Bantu traditional councils and the Baka community. Key informant interviews were conducted with local and international NGOs, forest exploitation and Sport hunting (Safari) enterprises and local public administrations that had working rapports with village communities around the BBNP. Information was generally sought on the role of stakeholders in forest management, in terms of use, protection, policy enforcement, challenges encountered in their activities and their relationships with other stakeholders. Actor linkage matrix was used to establish the relationships between different stakeholders. The identified stakeholder groups included the local community, State, international and local NGOs, economic operators (forest exploitation and sport hunting enterprises), and also the rules guiding their activities. Conflicts were rife between the community and the other stakeholders with regard to resource accessibility and use, whereas intra-community conflicts mostly resulted from cases of corruption and embezzlement linked to benefits sharing. Cases of collaboration among all the stakeholders were mostly related to anti-poaching patrols and setting of forest concession limits. There is a need to bring all stakeholders on the same platform, such as in a consultation workshop, to get their perceptions on building trust, conflict resolution and genuine collaboration in resources management.
基金funded by the Slovenian Research and Innovation Agency(https://www.aris-rs.si/sl/)ProgramResearch Core Fund-ing No.P4-0107(TL)and No.P4-0059(MK)+1 种基金Young Researcher Program Grant(MK)funded by the Slovenian Forestry Institute(P4-0107).
文摘Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine competition indices(CIs) for their suitability to model the effects of neighboring trees on silver fir(Abies alba) growth in Dinaric silver fir-European beech(Fagus sylvatica) forests. Although numerous competition indices have been developed, there is still limited consensus on their applicability in different forest types, especially in mature, structurally complex forest stands. The indices were evaluated using the adjusted coefficient of determination in a linear model wherein the volume growth of the last five years for 60 dominant silver fir trees was modeled as a function of tree volume and competition index. The results demonstrated that distance-dependent indices(e.g., the Hegyi height-distance competition and Rouvinen-Kuuluvainen diameter-distance competition indices), which consider the distance to competitors and their size, perform better than distance-independent indices. Using the optimization procedure in calculating the competition indices, only neighboring trees at a distance of up to 26-fold the diameter at breast height(DBH) of the selected tree(optimal search radius) and with a DBH of at least 20% of that of the target tree(optimal DBH) were considered competitors. Therefore, competition significantly influences the growth of dominant silver firs even in older age classes. The model based solely on tree volume explained 32.5% of the variability in volume growth, while the model that accounted for competition explained 64%. Optimizing the optimal search radius had a greater impact on model performance than optimizing the DBH threshold. This emphasizes the importance of balancing stand density and competition in silvicultural practice.
文摘We compared the dead wood (DW) conditions of Chesh- meh-sar forest and Sardab forest with different management history, including reserve forest and harvested forest. The First forest took 100% inventory from all the available DW. Also dead trees were compared in terms of species, shape, location and quality of fracture in both forests. Volumes of dead wood in Cheshmeh-sar and Sardab forests were 207.47 and 142.74 m3, respectively. Due to this significant difference, impact on the management level was determined. In Cheshmeh-sar forest, 42% of dead trees were standing and 58% were fallen type while in Sardab forest 38.6% were standing and 61.4% fallen. But the difference was not statis- tically significant l^etween them (p = 0.0587). In terms of quality, dead trees of hard, soft and hollow had the highest frequency, respectively. However, 71.5% of DW was seen as hard dead in Cheshmeh-sar forest while hard dead trees in Sardab forests were 54.2%. Soft quality degree of dead trees which formed in Cheshmeh-sar and Sardab forest were calcu- lated as 26.6% and 43.4% respectively. Also 30% of the dead trees of Sardab forest were eradicated while in Cheshmeh-sar this amount was reduced to 12%. Due to this significant difference ((P=0/018), it is concluded that the type of management and human interference are affecting the quality of dead trees and makes us to think the human in- terferences could effect on the ecosystem of touched forests.
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.
基金supported by the Joint CAS-MPG Research Project(Grant No.HZXM20225001MI)the National Natural Science Founda-tion of China(NSFC)(Grant No.41991234)the National Science Foundation(Grant No.1903722).
文摘Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China,but the high tree mortality of new afforestation forest remains a challenging but unsolved problem.It is still not clear how much vegetation can be sustained by the forest lands with given water,energy and soil conditions,i.e.,the carrying capacity for vegetation(CCV)of forest lands,which is the prerequisite for planning and implementing forest restoration projects.Here,we used a simplified method to evaluate the CCV across forest lands nationwide.Specifically,based on leaf area index(LAI)dataset,we use boosted regression tree and multiple linear regression model to analyze the CCV during 2001-2020 and 2021-2030 and explore the contribution of environmental factors.We find that there are three typical regions with lower CCV located in the Loess Plateau and the southern region of the Inner Mongolia Plateau,the Hengduan Mountain region,and the Tianshan Mountains.More importantly,the vegetation in the regions near the dry-wet climate transition zone show excess local carrying capacity for vegetation over the past two decades and they are more susceptible to potential climatic stress.In comparison,in the Greater Khingan Mountains and Hengduan Mountains,there is high potential to improve the forest growth.Temperature,precipitation and soil affects the CCV by shaping the vegetation in the optimal range.This indicates that more consideration should be given to restrictions of regional environmental constraints when planning afforestation and forest management.This study has important implications for guiding future forest scheme in China.
文摘This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation in forest management through membership of Community Forest Association (CFA) or not. Cross-sectional survey research design was applied for collecting quantitative data using a semi-structured questionnaire administered to 384 households stratified on the basis of PFM participation status. Qualitative data was collected through focused group discussions using a checklist and key informant interviews using an interview schedule. Using Statistical Package for Social Sciences version 25, Binomial regression with Wald Chi-square was analyzed to identify factors perceived to be significantly influencing benefits for PFM participants and Pearson Chi-square to compare factors perceived to be affecting PFM and non-PFM participants. CFA members participation in PFM was significantly and positively affected by benefits of PFM income generating activities and forest products accessed in the forest. Benefits linked to Plantation Establishment for Livelihood Improvement System (PELIS) for CFA members were significantly reduced by enforcement of moratorium policy since February 2018, diseases and pests, poor PELIS guideline adherence and animal damage. Benefits related to state forest access for firewood by the CFA members were negatively influenced by the moratorium policy. Diseases and pests affected benefits associated with bee keeping significantly. Comparing factors under different PFM participation status, crop production was significantly affected by policy changes, pest and diseases, animal damage and PELIS guideline adherence for CFA members than for Non-CFA members. Policy changes also affected the CFA members significantly in firewood collection and access to fodder in the state forest than the Non-CFA members. Hence, sustainable community participation in Upper Imenti Forest management requires: increasing PFM benefits, addressing factors reducing benefits and enhancing active participation of CFA members in PFM related decision-making processes.
文摘This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solution were discussed based on the present situation of forestry in Jilin Province. The author also made prospects for future application of bio-technique, infor-mation technology, new material technology and nuisance-free forest health technology in forest ecological network.