Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore...Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore and fracture features and accumulation evolution of the first member of Permian Maokou Formation(Mao 1 Member)are systematically studied,and the main controlling factors of unconventional gas enrichment and high production in marlstone assemblage of Mao 1 Member are discussed.(1)The enrichment and high yield of unconventional natural gas in the Mao 1 Member are controlled by three factors:carbon-rich fabric controlling hydrocarbon generation potential,good preservation controlling enrichment,and natural fracture controlling production.(2)The carbonate rocks of Mao 1 Member with carbon rich fabric have significant gas potential,exhibiting characteristics of self-generation and self-storage,which lays the material foundation for natural gas accumulation.(3)The occurrence state of natural gas is mainly free gas,which is prone to lateral migration,and good storage conditions are the key to natural gas enrichment.Positive structure is more conducive to natural gas accumulation,and a good compartment is created jointly by the self-sealing property of the Mao 1 Member and its top and bottom sealing property in monoclinal area,which is favorable for gas accumulation by retention.(4)Natural fractures are the main reservoir space and flow channel,and the more developed natural fractures are,the more conducive to the formation of high-quality porous-fractured reservoirs and the accumulation of natural gas,which is the core of controlling production.(5)The accumulation model of unconventional natural gas is proposed as“self-generation and self-storage,preservation controlling richness,and fractures controlling production”.(6)Identifying fracture development areas with good preservation conditions is the key to successful exploration,and implementing horizontal well staged acidizing and fracturing is an important means to increase production and efficiency.The study results are of referential significance for further understanding the natural gas enrichment in the Mao 1 Member and guiding the efficient exploration and development of new types of unconventional natural gas.展开更多
Water conservancy project has the characteristics of long-term and complexity. In the construction process, it will be affected by climate, geology, natural environment and other aspects, so that it has potential safe...Water conservancy project has the characteristics of long-term and complexity. In the construction process, it will be affected by climate, geology, natural environment and other aspects, so that it has potential safety hazards and quality problems. In recent years, the scale and quantity of water conservancy project construction in China have shown an upward trend. Only by strictly controlling each link of project construction can we effectively provide guarantee for its quality and reduce the probability of safety accidents. As far as the current situation is concerned, many construction units and construction personnel are backward in thinking, do not fully realize the importance of safety and quality control, and there are serious deficiencies in material, equipment and personnel management. There are a large number of potential safety hazards. After a safety accident, it will not only increase the cost investment of the construction unit, but also lead to casualties. Therefore, it is of great significance to study the quality control and safety management strategy in water conservancy project construction.展开更多
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geolog...Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.展开更多
The partial mining subsidence is a technical method widely used in the mining under buildings. How to calculate the subsidence caused by the partial mining is the key to use this method. By using the numerical calcula...The partial mining subsidence is a technical method widely used in the mining under buildings. How to calculate the subsidence caused by the partial mining is the key to use this method. By using the numerical calculation method, the main factors affecting the subsidence caused by the partial mining were analyzed, which include the recovery ratio of the partial mining, the width of the mined strip, the thickness and the depth of the mined seam, the conditions of the overburden. The relationship between the partial mining subsidence and the main factors was given according to the calculated results, which provides a theory basis for design and application of the partial mining.展开更多
Due to the complex conditions and strong heterogeneity of tight sandstone reservoirs,the reservoirs should be classified and the controlling factors of physical properties should be studied.Cast thin section observati...Due to the complex conditions and strong heterogeneity of tight sandstone reservoirs,the reservoirs should be classified and the controlling factors of physical properties should be studied.Cast thin section observations,cathodoluminescence,scanning electron microscopy(SEM),X-ray diffraction(XRD),and high-pressure mercury injection(HPMI)were used to classify and optimize the reservoir.The Brooks-Corey model and stepwise regression were used to study the fractal dimension and main controlling factors of the physical properties of the high-quality reservoir.The results show that the reservoirs in the study area can be divided into four types,and the high-quality reservoir has the best physical properties and pore-throat characteristics.In the high-quality reservoir,the homogeneity of transitional pores was the best,followed by that of micropores,and the worst was mesopores.The porosity was controlled by depth and kaolinite.The model with standardized coefficients is y=12.454−0.778×(Depth)+0.395×(Kaolinite).The permeability was controlled by depth,illite/montmorillonite,and siliceous cement,and the model with standardized coefficients is y=1.689−0.683×(Depth)−0.395×(Illite/Montmorillonite)−0.337×(Siliceous Cement).The pore-throat evolutionary model shows that the early-middle diagenetic period was when the reservoir physical properties were at their best,and the kaolinite intercrystalline pores and residual intergranular pores were the most important.展开更多
The shale of the Lower Cambrian Niutitang Formation in the Guizhou region has undergone complex diagenesis and has developed different types of pore textures,which affect the occurrence status of shale.In the present ...The shale of the Lower Cambrian Niutitang Formation in the Guizhou region has undergone complex diagenesis and has developed different types of pore textures,which affect the occurrence status of shale.In the present study,we applied scanning electron microscopy(SEM)and an isotherm analysis of low-temperature nitrogen gas adsorption to shale core samples drawn from the Niutitang Formation in the Guizhou region to quantify the shale pore development characteristics.In addition,we conducted a shale geochemical analysis in light of the main controlling factors for pore development.The results indicate that the shale pores and fractures of the Niutitang Formation can be divided into three types:organic pores,inorganic pores,and micro fractures.The organic pores are mainly distributed in the organic matter between inorganic mineral particles,with small pore diameters,which are characterized by inkpot,elliptic,and beaded shapes.The inorganic pores are mainly composed of narrow slit intragranular pores and intergranular pores.The micro fractures develop parallel plates with four-side openings and splint plates.The pores of the shale are mainly mesopores(53%),followed by micropores and macropores,with pore diameter distributions ranging mainly from 1 to 50 nm.The specific surface area is mainly provided by nanoscale pores with average diameters of less than 4 nm.Therefore,the smaller pore makes a greater contribution to the specific surface area,while the specific surface area increases with an increase in the total pore volume.The study further indicates that organic carbon content is the most important internal factor for shale pore development,especially in terms of the control of volume and the specific surface area of micropores.Moreover,quartz content has a certain effect on shale pores;the pore volume and specific surface area increase with increasing quartz content,but the control effect is not obvious.The effect of clay minerals on shale pores is negligible.The type of organic matter is also an important factor in controlling the developmental difference of shale pores,and a high degree of thermal evolution is not conducive to organic pore development.It was therefore concluded that intergranular pores and microfractures,mainly mesopores,are the main reservoir space and migration channels of Niutitang shale in the study area.The organic carbon content,mineral components,organic matter type,and degree of thermal evolution jointly control the development of shale pores,among which the organic carbon content is the most important influencing factor.展开更多
Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon...Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.展开更多
As one of the largest coal-rich provinces in China,Shanxi has extensive underground coal-mining operations.These operations have caused numerous ground cracks and substantial environmental damage.To study the main geo...As one of the largest coal-rich provinces in China,Shanxi has extensive underground coal-mining operations.These operations have caused numerous ground cracks and substantial environmental damage.To study the main geological and mining factors influencing mining-related ground cracks in Shanxi,a detailed investigation was conducted on 13 mining-induced surface cracks in Shanxi.Based on the results,the degrees of damage at the study sites were empirically classified into serious,moderate,and minor,and the influential geological and mining factors(e.g.,proportions of loess and sandstone in the mining depth,ratio of rock thickness to mining thickness,and ground slope)were discussed.According to the analysis results,three factors(proportion of loess,ratio of rock thickness to mining thickness,and ground slope)play a decisive role in ground cracks and can be respectively considered as the critical material,mechanical,and geometric conditions for the occurrence of mining surface disasters.Together,these three factors have a strong influence on the occurrence of serious discontinuous ground deformation.The results can be applied to help prevent and control ground damage caused by coal mining.The findings also provide a direct reference for predicting and eliminating hidden ground hazards in mining areas.展开更多
Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relati...Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relationship with production wells in fracture-cavity carbonate reservoirs were studied systematically, the influence of them on the distribution of residual oil was analyzed, and the main controlling factors mode of residual oil distribution after water flooding was established. Enhanced oil recovery methods were studied considering the development practice of Tahe oilfield. Research shows that the main controlling factors of residual oil distribution after water flooding in fracture-cavity carbonate reservoirs can be classified into four categories: local high point, insufficient well control, flow channel shielding and weak hydrodynamic. It is a systematic project to improve oil recovery in fracture-cavity carbonate reservoirs. In the stage of natural depletion, production should be well regulated to prevent bottom water channeling. In the early stage of waterflooding, injection-production relationship should be constructed according to reservoir type, connectivity and spatial location to enhance control and producing degree of waterflooding and minimize remaining oil. In the middle and late stage, according to the main controlling factors and distribution characteristics of remaining oil after water flooding, remaining oil should be tapped precisely by making use of gravity differentiation and capillary force imbibition, enhancing well control, disturbing the flow field and so on. Meanwhile, backup technologies of reservoir stimulation, new injection media, intelligent optimization etc. should be developed, smooth shift from water injection to gas injection should be ensured to maximize oil recovery.展开更多
In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme...In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.展开更多
In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main contr...In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.展开更多
Over the past decade,great progresses have been made in natural gas exploration in the Sichuan Basin,where several large gas fields(such as Anyue)have been discovered.With the increase of data and the deepening of exp...Over the past decade,great progresses have been made in natural gas exploration in the Sichuan Basin,where several large gas fields(such as Anyue)have been discovered.With the increase of data and the deepening of exploration,new knowledges have been gained in geological theory,thus it is necessary to further analyze the distribution characteristics and main controlling factors of large gas fields,thus to put forward new exploration directions for large gas fields.Therefore,based on the statistics on the geological parameters of 20 large gas fields discovered in this basin,the distribution rules,formation conditions and main controlling factors of large gas fields were analyzed,and the follow-up exploration directions were proposed.The following results were achieved.(1)Large gas fields are developed in different tectonic regions in the Sichuan Basin,mostly in the low and gentle tectonic belts in the central Sichuan Basin.Large gas fields are developed in seven series of strata in longitudinal stratigraphic sequences,which are dominated by the reef-shoal large gas fields formed in the Upper Permian ChangxingeLower Triassic Feixianguan Fms.(2)There are four sets of source rocks contributing to the formation of large gas fields,mostly from the assemblage of Xujiahe Fm source rocks.(3)Reservoirs in the large gas fields are dominated by porous carbonates and tight sandstones;large gas fields are mostly structuralelithological ones and normal pressure ones.(4)The development of marine large gas fields are mainly controlled by intracratonic rifts and paleo-uplifts.The controlling effect of intracratonic rifts is mainly from three aspects,namely the hydrocarbon generation center of source rocks,high-energy facies belts on the platform edges,and lateral sealing for hydrocarbon accumulation.The controlling effect of the paleo-uplifts mainly acts from another three aspects:intra-platform high-energy facies belts,karstic dolomite reservoirs and long-term hydrocarbon accumulation.The structures of foreland basins controlled the development of the continental large gas fields from four aspects:tectonic setting,source and reservoir assemblage,trap type and fracture distribution.In conclusion,a total of 5 domains with 14 favorable zones are the follow-up exploration directions of large gas fields in the Sichuan Basin.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and th...In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.展开更多
基金Supported by the National Science and Technology Major Project of China(2016ZX05061)Sinopec Science and Technology Department Project(P21042-4,P25030)。
文摘Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore and fracture features and accumulation evolution of the first member of Permian Maokou Formation(Mao 1 Member)are systematically studied,and the main controlling factors of unconventional gas enrichment and high production in marlstone assemblage of Mao 1 Member are discussed.(1)The enrichment and high yield of unconventional natural gas in the Mao 1 Member are controlled by three factors:carbon-rich fabric controlling hydrocarbon generation potential,good preservation controlling enrichment,and natural fracture controlling production.(2)The carbonate rocks of Mao 1 Member with carbon rich fabric have significant gas potential,exhibiting characteristics of self-generation and self-storage,which lays the material foundation for natural gas accumulation.(3)The occurrence state of natural gas is mainly free gas,which is prone to lateral migration,and good storage conditions are the key to natural gas enrichment.Positive structure is more conducive to natural gas accumulation,and a good compartment is created jointly by the self-sealing property of the Mao 1 Member and its top and bottom sealing property in monoclinal area,which is favorable for gas accumulation by retention.(4)Natural fractures are the main reservoir space and flow channel,and the more developed natural fractures are,the more conducive to the formation of high-quality porous-fractured reservoirs and the accumulation of natural gas,which is the core of controlling production.(5)The accumulation model of unconventional natural gas is proposed as“self-generation and self-storage,preservation controlling richness,and fractures controlling production”.(6)Identifying fracture development areas with good preservation conditions is the key to successful exploration,and implementing horizontal well staged acidizing and fracturing is an important means to increase production and efficiency.The study results are of referential significance for further understanding the natural gas enrichment in the Mao 1 Member and guiding the efficient exploration and development of new types of unconventional natural gas.
文摘Water conservancy project has the characteristics of long-term and complexity. In the construction process, it will be affected by climate, geology, natural environment and other aspects, so that it has potential safety hazards and quality problems. In recent years, the scale and quantity of water conservancy project construction in China have shown an upward trend. Only by strictly controlling each link of project construction can we effectively provide guarantee for its quality and reduce the probability of safety accidents. As far as the current situation is concerned, many construction units and construction personnel are backward in thinking, do not fully realize the importance of safety and quality control, and there are serious deficiencies in material, equipment and personnel management. There are a large number of potential safety hazards. After a safety accident, it will not only increase the cost investment of the construction unit, but also lead to casualties. Therefore, it is of great significance to study the quality control and safety management strategy in water conservancy project construction.
基金supported by the National Natural Science Foundation of China(41977258)the National Key Research and Development Program of China(2017YFC1501005 and 2018YFC1504704)。
文摘Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.
基金FoundationitemProject (50174029) supported by the National Natural Science Foundation of China .
文摘The partial mining subsidence is a technical method widely used in the mining under buildings. How to calculate the subsidence caused by the partial mining is the key to use this method. By using the numerical calculation method, the main factors affecting the subsidence caused by the partial mining were analyzed, which include the recovery ratio of the partial mining, the width of the mined strip, the thickness and the depth of the mined seam, the conditions of the overburden. The relationship between the partial mining subsidence and the main factors was given according to the calculated results, which provides a theory basis for design and application of the partial mining.
基金financially supported by the National Natural Science Foundation of China(Nos.41972172 and U1910205).
文摘Due to the complex conditions and strong heterogeneity of tight sandstone reservoirs,the reservoirs should be classified and the controlling factors of physical properties should be studied.Cast thin section observations,cathodoluminescence,scanning electron microscopy(SEM),X-ray diffraction(XRD),and high-pressure mercury injection(HPMI)were used to classify and optimize the reservoir.The Brooks-Corey model and stepwise regression were used to study the fractal dimension and main controlling factors of the physical properties of the high-quality reservoir.The results show that the reservoirs in the study area can be divided into four types,and the high-quality reservoir has the best physical properties and pore-throat characteristics.In the high-quality reservoir,the homogeneity of transitional pores was the best,followed by that of micropores,and the worst was mesopores.The porosity was controlled by depth and kaolinite.The model with standardized coefficients is y=12.454−0.778×(Depth)+0.395×(Kaolinite).The permeability was controlled by depth,illite/montmorillonite,and siliceous cement,and the model with standardized coefficients is y=1.689−0.683×(Depth)−0.395×(Illite/Montmorillonite)−0.337×(Siliceous Cement).The pore-throat evolutionary model shows that the early-middle diagenetic period was when the reservoir physical properties were at their best,and the kaolinite intercrystalline pores and residual intergranular pores were the most important.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2023]192)ChinaGuizhou Provincial Key Technology R&D Program(No.[2023]370)ChinaGeological Exploration Foundation of Guizhou Province(No.52000024P0048BH10174 M)China.
文摘The shale of the Lower Cambrian Niutitang Formation in the Guizhou region has undergone complex diagenesis and has developed different types of pore textures,which affect the occurrence status of shale.In the present study,we applied scanning electron microscopy(SEM)and an isotherm analysis of low-temperature nitrogen gas adsorption to shale core samples drawn from the Niutitang Formation in the Guizhou region to quantify the shale pore development characteristics.In addition,we conducted a shale geochemical analysis in light of the main controlling factors for pore development.The results indicate that the shale pores and fractures of the Niutitang Formation can be divided into three types:organic pores,inorganic pores,and micro fractures.The organic pores are mainly distributed in the organic matter between inorganic mineral particles,with small pore diameters,which are characterized by inkpot,elliptic,and beaded shapes.The inorganic pores are mainly composed of narrow slit intragranular pores and intergranular pores.The micro fractures develop parallel plates with four-side openings and splint plates.The pores of the shale are mainly mesopores(53%),followed by micropores and macropores,with pore diameter distributions ranging mainly from 1 to 50 nm.The specific surface area is mainly provided by nanoscale pores with average diameters of less than 4 nm.Therefore,the smaller pore makes a greater contribution to the specific surface area,while the specific surface area increases with an increase in the total pore volume.The study further indicates that organic carbon content is the most important internal factor for shale pore development,especially in terms of the control of volume and the specific surface area of micropores.Moreover,quartz content has a certain effect on shale pores;the pore volume and specific surface area increase with increasing quartz content,but the control effect is not obvious.The effect of clay minerals on shale pores is negligible.The type of organic matter is also an important factor in controlling the developmental difference of shale pores,and a high degree of thermal evolution is not conducive to organic pore development.It was therefore concluded that intergranular pores and microfractures,mainly mesopores,are the main reservoir space and migration channels of Niutitang shale in the study area.The organic carbon content,mineral components,organic matter type,and degree of thermal evolution jointly control the development of shale pores,among which the organic carbon content is the most important influencing factor.
基金granted by the Important National Science&Technology Specific Projects(grants No.2011ZX05006-003 and 2016ZX05006-003)the National Natural Science Foundation(grant No.41372132)
文摘Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51704205 and 51574132)Shanxi Natural Science Foundation of China(Grant No.201701D221025)Key R&D Plan projects in Shanxi Province of China(Grant No.201803D31044).
文摘As one of the largest coal-rich provinces in China,Shanxi has extensive underground coal-mining operations.These operations have caused numerous ground cracks and substantial environmental damage.To study the main geological and mining factors influencing mining-related ground cracks in Shanxi,a detailed investigation was conducted on 13 mining-induced surface cracks in Shanxi.Based on the results,the degrees of damage at the study sites were empirically classified into serious,moderate,and minor,and the influential geological and mining factors(e.g.,proportions of loess and sandstone in the mining depth,ratio of rock thickness to mining thickness,and ground slope)were discussed.According to the analysis results,three factors(proportion of loess,ratio of rock thickness to mining thickness,and ground slope)play a decisive role in ground cracks and can be respectively considered as the critical material,mechanical,and geometric conditions for the occurrence of mining surface disasters.Together,these three factors have a strong influence on the occurrence of serious discontinuous ground deformation.The results can be applied to help prevent and control ground damage caused by coal mining.The findings also provide a direct reference for predicting and eliminating hidden ground hazards in mining areas.
基金Supported by the China National Science and Technology Major Project(2016ZX05014)
文摘Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relationship with production wells in fracture-cavity carbonate reservoirs were studied systematically, the influence of them on the distribution of residual oil was analyzed, and the main controlling factors mode of residual oil distribution after water flooding was established. Enhanced oil recovery methods were studied considering the development practice of Tahe oilfield. Research shows that the main controlling factors of residual oil distribution after water flooding in fracture-cavity carbonate reservoirs can be classified into four categories: local high point, insufficient well control, flow channel shielding and weak hydrodynamic. It is a systematic project to improve oil recovery in fracture-cavity carbonate reservoirs. In the stage of natural depletion, production should be well regulated to prevent bottom water channeling. In the early stage of waterflooding, injection-production relationship should be constructed according to reservoir type, connectivity and spatial location to enhance control and producing degree of waterflooding and minimize remaining oil. In the middle and late stage, according to the main controlling factors and distribution characteristics of remaining oil after water flooding, remaining oil should be tapped precisely by making use of gravity differentiation and capillary force imbibition, enhancing well control, disturbing the flow field and so on. Meanwhile, backup technologies of reservoir stimulation, new injection media, intelligent optimization etc. should be developed, smooth shift from water injection to gas injection should be ensured to maximize oil recovery.
基金provided by the National Key Basic Research Program of China (No. 2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51421003)the Jiangsu Province Ordinary University Graduate Student Scientific Research Innovation Projects (No. KYLX16_0564)
文摘In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.
文摘In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05007-002).
文摘Over the past decade,great progresses have been made in natural gas exploration in the Sichuan Basin,where several large gas fields(such as Anyue)have been discovered.With the increase of data and the deepening of exploration,new knowledges have been gained in geological theory,thus it is necessary to further analyze the distribution characteristics and main controlling factors of large gas fields,thus to put forward new exploration directions for large gas fields.Therefore,based on the statistics on the geological parameters of 20 large gas fields discovered in this basin,the distribution rules,formation conditions and main controlling factors of large gas fields were analyzed,and the follow-up exploration directions were proposed.The following results were achieved.(1)Large gas fields are developed in different tectonic regions in the Sichuan Basin,mostly in the low and gentle tectonic belts in the central Sichuan Basin.Large gas fields are developed in seven series of strata in longitudinal stratigraphic sequences,which are dominated by the reef-shoal large gas fields formed in the Upper Permian ChangxingeLower Triassic Feixianguan Fms.(2)There are four sets of source rocks contributing to the formation of large gas fields,mostly from the assemblage of Xujiahe Fm source rocks.(3)Reservoirs in the large gas fields are dominated by porous carbonates and tight sandstones;large gas fields are mostly structuralelithological ones and normal pressure ones.(4)The development of marine large gas fields are mainly controlled by intracratonic rifts and paleo-uplifts.The controlling effect of intracratonic rifts is mainly from three aspects,namely the hydrocarbon generation center of source rocks,high-energy facies belts on the platform edges,and lateral sealing for hydrocarbon accumulation.The controlling effect of the paleo-uplifts mainly acts from another three aspects:intra-platform high-energy facies belts,karstic dolomite reservoirs and long-term hydrocarbon accumulation.The structures of foreland basins controlled the development of the continental large gas fields from four aspects:tectonic setting,source and reservoir assemblage,trap type and fracture distribution.In conclusion,a total of 5 domains with 14 favorable zones are the follow-up exploration directions of large gas fields in the Sichuan Basin.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
文摘In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.