The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
AIM:To compare objective dry retinoscopy and subjective refraction measurements in patients with mild keratoconus(KCN)and quantify any differences.METHODS:This cross-sectional study was done on 68 eyes of 68 patients ...AIM:To compare objective dry retinoscopy and subjective refraction measurements in patients with mild keratoconus(KCN)and quantify any differences.METHODS:This cross-sectional study was done on 68 eyes of 68 patients diagnosed with mild KCN.Objective dry retinoscopy using autorefractometer and subjective refraction measurements were performed.Sphere,cylinder,J0,J45,and spherical equivalent values were compared between the two techniques.RESULTS:The mean age of 68 patients with mild KCN was 21.32±5.03y(12–35y).There were 37(54.4%)males.Objective refraction yielded significantly more myopic sphere(-1.44 D vs-0.57 D),higher cylinder magnitude(-2.24 D vs-1.48 D),and more myopic spherical equivalent(-2.56 D vs-1.31 D)compared to subjective refraction(all P<0.05).The mean differences were-0.87 D for sphere,-0.76 D for cylinder,and-1.25 D for spherical equivalent.No significant differences were found for J0 and J45 values,indicating agreement in astigmatism axis(P>0.05).CONCLUSION:In patients with mild KCN,objective dry retinoscopy overestimates the degree of myopia and astigmatism compared to subjective refraction.The irregular cornea in KCN likely impacts objective measurements.Subjective refraction allows compensation for irregularity,providing a more accurate correction.When determining refractive targets,the tendency of objective methods to overcorrect should be considered.展开更多
At present,the identification of tropical cyclone remote precipitation(TRP)requires subjective participation,leading to inconsistent results among different researchers despite adopting the same identification standar...At present,the identification of tropical cyclone remote precipitation(TRP)requires subjective participation,leading to inconsistent results among different researchers despite adopting the same identification standard.Thus,establishing an objective identification method is greatly important.In this study,an objective synoptic analysis technique for TRP(OSAT_TRP)is proposed to identify TRP using daily precipitation datasets,historical tropical cyclone(TC)track data,and the ERA5 reanalysis data.This method includes three steps:first,independent rain belts are separated,and those that might relate to TCs'remote effects are distinguished according to their distance from the TCs.Second,the strong water vapor transport belt from the TC is identified using integrated horizontal water vapor transport(IVT).Third,TRP is distinguished by connecting the first two steps.The TRP obtained through this method can satisfy three criteria,as follows:1)the precipitation occurs outside the circulation of TCs,2)the precipitation is affected by TCs,and 3)a gap exists between the TRP and TC rain belt.Case diagnosis analysis,compared with subjective TRP results and backward trajectory analyses using HYSPLIT,indicates that OSAT_TRP can distinguish TRP even when multiple TCs in the Northwest Pacific are involved.Then,we applied the OSAT_TRP to select typical TRPs and obtained the synoptic-scale environments of the TRP through composite analysis.展开更多
The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Cent...The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Center(EC model)from February to December in 2022 were used.Based on the data of the national intelligent grid forecast,the intelligent grid forecast of the regional bureau,EC model,etc.,temperature was predicted.According to the research of the grid point forecast synthesis algorithm with the highest accuracy rate in the recent three days,the temperature grid point correction was conducted in two forms of stations and grids.In order to reduce the deviation caused by the seasonal system temperature difference,a temperature prediction model was established by using the rolling forecast errors of 5,10,15,20,25 and 30 d as the basis data.The verification and evaluation of objective correction results show that the accuracy rate of temperature forecast by the intelligent grid of the regional bureau,the national intelligent grid,and EC model could be increased by 10%,8%,and 12%,respectively.展开更多
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).展开更多
According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation dat...According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation data of the competition fields,a dynamic optimal correction method was proposed to improve the accuracy rate of temperature and wind speed prediction.Through techniques such as deviation correction and univariate linear regression,mathematical models applicable to different competition regions were constructed,and the effective correction of objective forecast products within 0-120 h were realized.The results show that this method significantly improved the accuracy rate of the prediction of temperature,wind speed and extreme wind speed,and the effect was more obvious especially when the model performance was unstable.Meanwhile,terrain and climate background had a significant impact on the correction effect.This study provides new technical support for mountain meteorological forecast.展开更多
Objective: To explore the effect of a whole-course nursing objective management system on disease control and quality of life in patients with type 2 diabetes, and to propose strategies for constructing such a system ...Objective: To explore the effect of a whole-course nursing objective management system on disease control and quality of life in patients with type 2 diabetes, and to propose strategies for constructing such a system for these patients. Methods: Ninety patients with type 2 diabetes admitted to the Department of Endocrinology of the hospital from January 2024 to June 2024 were selected. The control group (n = 45) received routine nursing care, while the observation group (n = 45) received whole-course nursing. Indicators such as glucose metabolism and compliance behavior were measured before and after care, and the health and quality of life of patients in both groups were evaluated. Results: A comparison of blood glucose levels and compliance behavior showed that the observation group had lower blood glucose levels than the control group (P < 0.05). Additionally, the compliance behavior score of the observation group was higher than that of the control group (P < 0.05). Conclusion: The holistic nursing model demonstrates significant nursing effects for patients with type 2 diabetes. This approach not only assists in blood sugar control, prevents disease progression, and reduces complications, but also enhances patients’ knowledge of health management, aiding in their recovery.展开更多
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i...In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems.展开更多
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode...To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.展开更多
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas...The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.展开更多
AIM:To evaluate the effect of low-degree astigmatism on objective visual quality through the Optical Quality Analysis System(OQAS).METHODS:This study enrolled 46 participants(aged 23 to 30y,90 eyes)with normal or corr...AIM:To evaluate the effect of low-degree astigmatism on objective visual quality through the Optical Quality Analysis System(OQAS).METHODS:This study enrolled 46 participants(aged 23 to 30y,90 eyes)with normal or corrected-to-normal vision.The cylindrical lenses(0,0.5,0.75,1.0,and 1.25 D)were placed at the axial direction(180°,45°,90°,and 135°)in front of the eyes with the best correction to form 16 types of regular low-degree astigmatism.OQAS was used to detect the objective visual quality,recorded as the objective scattering index(OSI),OQAS values at contrasts of 100%,20%,and 9%predictive visual acuity(OV100%,OV20%,and OV9%),modulation transfer function cut-off(MTFcut-off)and Strehl ratio(SR).The mixed effect linear model was used to compare objective visual quality differences between groups and examine associations between astigmatic magnitude and objective visual quality parameters.RESULTS:Apparent negative relationships between the magnitude of low astigmatism and objective visual quality were observed.The increase of OSI per degree of astigmatism at 180°,45°,90°,and 135°axis were 0.38(95%CI:0.35,0.42),0.50(95%CI:0.46,0.53),0.49(95%CI:0.45,0.54)and 0.37(95%CI:0.34,0.41),respectively.The decrease of MTFcut-off per degree of astigmatism at 180°,45°,90°,and 135°axis were-10.30(95%CI:-11.43,-9.16),-12.73(95%CI:-13.62,-11.86),-12.75(95%CI:-13.79,-11.70),and-9.97(95%CI:-10.92,-9.03),respectively.At the same astigmatism degree,OSI at 45°and 90°axis were higher than that at 0°and 135°axis,while MTFcut-off were lower.CONCLUSION:Low astigmatism of only 0.50 D can significantly reduce the objective visual quality.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Informati...Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.展开更多
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap...To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.展开更多
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
The development objectives of the Chinese government have a guiding effect on the school-running characteristics of private colleges and universities.This paper explores the relationship between the characteristics of...The development objectives of the Chinese government have a guiding effect on the school-running characteristics of private colleges and universities.This paper explores the relationship between the characteristics of private colleges and universities and the development objectives of the provincial government,using Jiangsu Province as a case study.All the schools have the consciousness of fully considering the development objectives of Jiangsu Province when formulating the school-running characteristics.Their characteristics all contain some training methods,training courses,or institutional construction aiming at the development objectives.Most universities can support the government’s objectives on employment and innovation.Only a third of the schools provide government support for science research.Private colleges and universities should make full use of the free and flexible advantages of private education,combine them with the continuous changes of policies and markets,and create clear,scientific,and dynamic school-running characteristics,in order to achieve long-term development.展开更多
The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new functio...The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.展开更多
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens...Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones...Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.展开更多
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘AIM:To compare objective dry retinoscopy and subjective refraction measurements in patients with mild keratoconus(KCN)and quantify any differences.METHODS:This cross-sectional study was done on 68 eyes of 68 patients diagnosed with mild KCN.Objective dry retinoscopy using autorefractometer and subjective refraction measurements were performed.Sphere,cylinder,J0,J45,and spherical equivalent values were compared between the two techniques.RESULTS:The mean age of 68 patients with mild KCN was 21.32±5.03y(12–35y).There were 37(54.4%)males.Objective refraction yielded significantly more myopic sphere(-1.44 D vs-0.57 D),higher cylinder magnitude(-2.24 D vs-1.48 D),and more myopic spherical equivalent(-2.56 D vs-1.31 D)compared to subjective refraction(all P<0.05).The mean differences were-0.87 D for sphere,-0.76 D for cylinder,and-1.25 D for spherical equivalent.No significant differences were found for J0 and J45 values,indicating agreement in astigmatism axis(P>0.05).CONCLUSION:In patients with mild KCN,objective dry retinoscopy overestimates the degree of myopia and astigmatism compared to subjective refraction.The irregular cornea in KCN likely impacts objective measurements.Subjective refraction allows compensation for irregularity,providing a more accurate correction.When determining refractive targets,the tendency of objective methods to overcorrect should be considered.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_1136)the National Natural Scientific Foundation of China(No.42275037)+2 种基金the Basic Research Fund of CAMS(No.2023Z016)the Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(No.SCSF202202)supported by the Jiangsu Collaborative Innovation Center for Climate Change。
文摘At present,the identification of tropical cyclone remote precipitation(TRP)requires subjective participation,leading to inconsistent results among different researchers despite adopting the same identification standard.Thus,establishing an objective identification method is greatly important.In this study,an objective synoptic analysis technique for TRP(OSAT_TRP)is proposed to identify TRP using daily precipitation datasets,historical tropical cyclone(TC)track data,and the ERA5 reanalysis data.This method includes three steps:first,independent rain belts are separated,and those that might relate to TCs'remote effects are distinguished according to their distance from the TCs.Second,the strong water vapor transport belt from the TC is identified using integrated horizontal water vapor transport(IVT).Third,TRP is distinguished by connecting the first two steps.The TRP obtained through this method can satisfy three criteria,as follows:1)the precipitation occurs outside the circulation of TCs,2)the precipitation is affected by TCs,and 3)a gap exists between the TRP and TC rain belt.Case diagnosis analysis,compared with subjective TRP results and backward trajectory analyses using HYSPLIT,indicates that OSAT_TRP can distinguish TRP even when multiple TCs in the Northwest Pacific are involved.Then,we applied the OSAT_TRP to select typical TRPs and obtained the synoptic-scale environments of the TRP through composite analysis.
文摘The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Center(EC model)from February to December in 2022 were used.Based on the data of the national intelligent grid forecast,the intelligent grid forecast of the regional bureau,EC model,etc.,temperature was predicted.According to the research of the grid point forecast synthesis algorithm with the highest accuracy rate in the recent three days,the temperature grid point correction was conducted in two forms of stations and grids.In order to reduce the deviation caused by the seasonal system temperature difference,a temperature prediction model was established by using the rolling forecast errors of 5,10,15,20,25 and 30 d as the basis data.The verification and evaluation of objective correction results show that the accuracy rate of temperature forecast by the intelligent grid of the regional bureau,the national intelligent grid,and EC model could be increased by 10%,8%,and 12%,respectively.
文摘The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
文摘According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation data of the competition fields,a dynamic optimal correction method was proposed to improve the accuracy rate of temperature and wind speed prediction.Through techniques such as deviation correction and univariate linear regression,mathematical models applicable to different competition regions were constructed,and the effective correction of objective forecast products within 0-120 h were realized.The results show that this method significantly improved the accuracy rate of the prediction of temperature,wind speed and extreme wind speed,and the effect was more obvious especially when the model performance was unstable.Meanwhile,terrain and climate background had a significant impact on the correction effect.This study provides new technical support for mountain meteorological forecast.
文摘Objective: To explore the effect of a whole-course nursing objective management system on disease control and quality of life in patients with type 2 diabetes, and to propose strategies for constructing such a system for these patients. Methods: Ninety patients with type 2 diabetes admitted to the Department of Endocrinology of the hospital from January 2024 to June 2024 were selected. The control group (n = 45) received routine nursing care, while the observation group (n = 45) received whole-course nursing. Indicators such as glucose metabolism and compliance behavior were measured before and after care, and the health and quality of life of patients in both groups were evaluated. Results: A comparison of blood glucose levels and compliance behavior showed that the observation group had lower blood glucose levels than the control group (P < 0.05). Additionally, the compliance behavior score of the observation group was higher than that of the control group (P < 0.05). Conclusion: The holistic nursing model demonstrates significant nursing effects for patients with type 2 diabetes. This approach not only assists in blood sugar control, prevents disease progression, and reduces complications, but also enhances patients’ knowledge of health management, aiding in their recovery.
基金Sponsored by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2022L294)Taiyuan University of Science and Technology Scientific Research Initial Funding(Grant Nos.W2022018,W20242012)Foundamental Research Program of Shanxi Province(Grant No.202403021212170).
文摘In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems.
基金co-supported by the National Natural Science Foundation of China(Nos.52405293,52375237)China Postdoctoral Science Foundation(No.2024M754219)Shaanxi Province Postdoctoral Research Project Funding,China。
文摘To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.
文摘The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.
文摘AIM:To evaluate the effect of low-degree astigmatism on objective visual quality through the Optical Quality Analysis System(OQAS).METHODS:This study enrolled 46 participants(aged 23 to 30y,90 eyes)with normal or corrected-to-normal vision.The cylindrical lenses(0,0.5,0.75,1.0,and 1.25 D)were placed at the axial direction(180°,45°,90°,and 135°)in front of the eyes with the best correction to form 16 types of regular low-degree astigmatism.OQAS was used to detect the objective visual quality,recorded as the objective scattering index(OSI),OQAS values at contrasts of 100%,20%,and 9%predictive visual acuity(OV100%,OV20%,and OV9%),modulation transfer function cut-off(MTFcut-off)and Strehl ratio(SR).The mixed effect linear model was used to compare objective visual quality differences between groups and examine associations between astigmatic magnitude and objective visual quality parameters.RESULTS:Apparent negative relationships between the magnitude of low astigmatism and objective visual quality were observed.The increase of OSI per degree of astigmatism at 180°,45°,90°,and 135°axis were 0.38(95%CI:0.35,0.42),0.50(95%CI:0.46,0.53),0.49(95%CI:0.45,0.54)and 0.37(95%CI:0.34,0.41),respectively.The decrease of MTFcut-off per degree of astigmatism at 180°,45°,90°,and 135°axis were-10.30(95%CI:-11.43,-9.16),-12.73(95%CI:-13.62,-11.86),-12.75(95%CI:-13.79,-11.70),and-9.97(95%CI:-10.92,-9.03),respectively.At the same astigmatism degree,OSI at 45°and 90°axis were higher than that at 0°and 135°axis,while MTFcut-off were lower.CONCLUSION:Low astigmatism of only 0.50 D can significantly reduce the objective visual quality.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
文摘Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.
基金supported by the Shanghai Science and Technology Innovation Action Plan High-Tech Field Project(Grant No.22511100601)for the year 2022 and Technology Development Fund for People’s Livelihood Research(Research on Transmission Line Deep Foundation Pit Environmental Situation Awareness System Based on Multi-Source Data).
文摘To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
基金Nanjing Tech University Pujiang Institute School-Level Project“Empirical Research on the Impact of Regional Development Policies on the School-Running Characteristics of Private Universities”(njpj2023-2-15)。
文摘The development objectives of the Chinese government have a guiding effect on the school-running characteristics of private colleges and universities.This paper explores the relationship between the characteristics of private colleges and universities and the development objectives of the provincial government,using Jiangsu Province as a case study.All the schools have the consciousness of fully considering the development objectives of Jiangsu Province when formulating the school-running characteristics.Their characteristics all contain some training methods,training courses,or institutional construction aiming at the development objectives.Most universities can support the government’s objectives on employment and innovation.Only a third of the schools provide government support for science research.Private colleges and universities should make full use of the free and flexible advantages of private education,combine them with the continuous changes of policies and markets,and create clear,scientific,and dynamic school-running characteristics,in order to achieve long-term development.
文摘The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
基金supported in part by the National Science Foundation of China(52371372)the Project of Science and Technology Commission of Shanghai Municipality,China(22JC1401400,21190780300)the 111 Project,China(D18003)
文摘Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
基金supported by the National Natural Science Foundation of China(Nos.62276204 and 62203343)the Fundamental Research Funds for the Central Universities(No.YJSJ24011)+1 种基金the Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)the China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.