The tight-tuff heavy oil reservoir exhibits severe heterogeneity and is characterized by high density,high viscosity,and a high wax content,posing significant challenges for its development.While CO_(2)huffand-puff(H-...The tight-tuff heavy oil reservoir exhibits severe heterogeneity and is characterized by high density,high viscosity,and a high wax content,posing significant challenges for its development.While CO_(2)huffand-puff(H-n-P)enhances oil recovery,these reservoirs struggle with low displacement efficiency.This study proposes a method that combines CO_(2)with an oil-soluble viscosity reducer to improve displacement efficiency in the H-n-P process for tight-tuff heavy oil reservoirs.It also focuses on evaluating pore utilization limits and optimizing the injection strategy.Core samples and crude oil from the TH oilfield(a tight-tuff heavy oil reservoir)were used to conduct online NMR core flooding experiments,including depletion development,water,CO_(2),and HDC(CO_(2)combined with an oil-soluble viscosity reducer)H-n-P injection processes.A single-porosity model accurately reflecting its geological characteristics was developed using the GEM component simulator within the CMG numerical simulation software to investigate the optimized schemes and the enhanced oil recovery potential for a tight-tuff heavy oil reservoir in the TH oilfield.This model was utilized to evaluate the impact of various injection strategies on oilfield recovery efficiency.The study was designed and implemented with five distinct injection schemes.Results showed that oil was produced primarily from large and medium pores during the depletion stage,while water H-n-P,with CO_(2)H-n-P,first targeted macropores,then mesopores,and micropores.The lower pore utilization limit was 0.0267μm.In the HDC H-n-P process,most oil was recovered from water-flooded pores.Still,HDC's lower injection capacity increased the pore utilization limit to 0.03μm,making micropore recovery difficult.Experimental and modeling results suggest that the optimal develo p ment plan for the TH oilfield is one cycle of HDC H-n-P followed by two cycles of CO_(2)H-n-P.This strategy leverages HDC's ability to promote water and oil recovery in the early stage and mass transfer and extraction capacity of CO_(2)in later cycles.Additionally,the characteristics of CO_(2)and HDC H-n-P processes,pore utilization,and recoverable oil(at the pore scale)were evaluated.The results of this study are crucial for refining the reservoir development plan.展开更多
We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB)....We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).We acme energy-efficient technologies for sustainable energy and material recovery and applications.The technologies of thermochemical conversion(TC),biochemical conversion(BC),electrochemical conversion(EC),and photochemical conversion(PTC)are summarized for HALUB.Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg^(-1)and total benefit of 749$/ton biomass via TC.Specific surface area of biochar reached 3000 m^(2)g^(-1)via pyrolytic carbonization of waste bean dregs.Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%.Besides,lignocellulosic biomass can contribute to a current density of 672 mA m^(-2)via EC.Bioresource can be 100%selectively synthesized via electrocatalysis through EC and PTC.Machine learning,techno-economic analysis,and life cycle analysis are essential to various upgrading approaches of HALUB.Sustainable biomaterials,sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis,microfluidic and micro/nanomotors beyond are also highlighted.New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.展开更多
With rapid increase of distributed solar power generation and direct current(DC)based loads such as data centers,electric vehicles(EVs),and DC household appliances,the development trend of the power system is changed ...With rapid increase of distributed solar power generation and direct current(DC)based loads such as data centers,electric vehicles(EVs),and DC household appliances,the development trend of the power system is changed from conventional alternate current(AC)to DC.Traditional AC power systems can scarcely meet the development demand of new DC trends,especially since both the generation side and load side are comprised of DC-based electronic power components.With this background,low voltage direct current supply and utilization system(LVDCSUS)has attracted more and more attention for its great advantages over an AC grid to overcome challenges in operation,reliability,and energy loss in renewable energy connection,DC load power utilization and a number of other aspects.However,the definition of the LVDCSUS is still not clear even though many demonstration projects have been put into planning and operation.In order to provide a clear description of LVDCSUS,first,the characteristics of LVDCSUS are illustrated in this paper to show the advance of the LVDCSUS.Second,the potential application scenarios of LVDCSUS are presented in this paper.Third,application of LVDCSUS technologies and some demonstration projects in China are introduced.Besides the development of the LVDCSUS,key technologies,including but not limited to planning and design,voltage levels,control strategies,and key equipment of LVDCSUS,are discussed in this paper.Finally,future application areas and the research orientations of LVDCSUS are analyzed.展开更多
The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone w...The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.展开更多
基金funded by the Natural Science Foundation of Beijing Municipality(3232028)the National Natural Science Foundation of China(52274053)the National Foreign Expert Individual Project(H20240045)。
文摘The tight-tuff heavy oil reservoir exhibits severe heterogeneity and is characterized by high density,high viscosity,and a high wax content,posing significant challenges for its development.While CO_(2)huffand-puff(H-n-P)enhances oil recovery,these reservoirs struggle with low displacement efficiency.This study proposes a method that combines CO_(2)with an oil-soluble viscosity reducer to improve displacement efficiency in the H-n-P process for tight-tuff heavy oil reservoirs.It also focuses on evaluating pore utilization limits and optimizing the injection strategy.Core samples and crude oil from the TH oilfield(a tight-tuff heavy oil reservoir)were used to conduct online NMR core flooding experiments,including depletion development,water,CO_(2),and HDC(CO_(2)combined with an oil-soluble viscosity reducer)H-n-P injection processes.A single-porosity model accurately reflecting its geological characteristics was developed using the GEM component simulator within the CMG numerical simulation software to investigate the optimized schemes and the enhanced oil recovery potential for a tight-tuff heavy oil reservoir in the TH oilfield.This model was utilized to evaluate the impact of various injection strategies on oilfield recovery efficiency.The study was designed and implemented with five distinct injection schemes.Results showed that oil was produced primarily from large and medium pores during the depletion stage,while water H-n-P,with CO_(2)H-n-P,first targeted macropores,then mesopores,and micropores.The lower pore utilization limit was 0.0267μm.In the HDC H-n-P process,most oil was recovered from water-flooded pores.Still,HDC's lower injection capacity increased the pore utilization limit to 0.03μm,making micropore recovery difficult.Experimental and modeling results suggest that the optimal develo p ment plan for the TH oilfield is one cycle of HDC H-n-P followed by two cycles of CO_(2)H-n-P.This strategy leverages HDC's ability to promote water and oil recovery in the early stage and mass transfer and extraction capacity of CO_(2)in later cycles.Additionally,the characteristics of CO_(2)and HDC H-n-P processes,pore utilization,and recoverable oil(at the pore scale)were evaluated.The results of this study are crucial for refining the reservoir development plan.
基金the support from Harvard/MITthe support funded by the National Research Foundation(NRF),Prime Minister’s Office,Singapore,under its Campus for Research Excellence and Technological Enterprise(CREATE)program,Grant Number R-706-001-102-281the funding support from Harbin Institute of Technology,China,Grant Number FRFCU5710053121。
文摘We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).We acme energy-efficient technologies for sustainable energy and material recovery and applications.The technologies of thermochemical conversion(TC),biochemical conversion(BC),electrochemical conversion(EC),and photochemical conversion(PTC)are summarized for HALUB.Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg^(-1)and total benefit of 749$/ton biomass via TC.Specific surface area of biochar reached 3000 m^(2)g^(-1)via pyrolytic carbonization of waste bean dregs.Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%.Besides,lignocellulosic biomass can contribute to a current density of 672 mA m^(-2)via EC.Bioresource can be 100%selectively synthesized via electrocatalysis through EC and PTC.Machine learning,techno-economic analysis,and life cycle analysis are essential to various upgrading approaches of HALUB.Sustainable biomaterials,sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis,microfluidic and micro/nanomotors beyond are also highlighted.New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
文摘With rapid increase of distributed solar power generation and direct current(DC)based loads such as data centers,electric vehicles(EVs),and DC household appliances,the development trend of the power system is changed from conventional alternate current(AC)to DC.Traditional AC power systems can scarcely meet the development demand of new DC trends,especially since both the generation side and load side are comprised of DC-based electronic power components.With this background,low voltage direct current supply and utilization system(LVDCSUS)has attracted more and more attention for its great advantages over an AC grid to overcome challenges in operation,reliability,and energy loss in renewable energy connection,DC load power utilization and a number of other aspects.However,the definition of the LVDCSUS is still not clear even though many demonstration projects have been put into planning and operation.In order to provide a clear description of LVDCSUS,first,the characteristics of LVDCSUS are illustrated in this paper to show the advance of the LVDCSUS.Second,the potential application scenarios of LVDCSUS are presented in this paper.Third,application of LVDCSUS technologies and some demonstration projects in China are introduced.Besides the development of the LVDCSUS,key technologies,including but not limited to planning and design,voltage levels,control strategies,and key equipment of LVDCSUS,are discussed in this paper.Finally,future application areas and the research orientations of LVDCSUS are analyzed.
文摘The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.