期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An experimental study of huff-and-puff oil recovery for tight-tuff heavy oil reservoirs by synergistic with viscosity reducer and CO_(2)utilizing online NMR technology
1
作者 Hao Chen Pei-Fu Xu +6 位作者 Yong-Xian Zhu Jia-Yi Yu Mei Zhang Xian-Min Zhou Ming-Cheng Ni Yi Wu Xi-Liang Liu 《Petroleum Science》 2025年第11期4736-4752,共17页
The tight-tuff heavy oil reservoir exhibits severe heterogeneity and is characterized by high density,high viscosity,and a high wax content,posing significant challenges for its development.While CO_(2)huffand-puff(H-... The tight-tuff heavy oil reservoir exhibits severe heterogeneity and is characterized by high density,high viscosity,and a high wax content,posing significant challenges for its development.While CO_(2)huffand-puff(H-n-P)enhances oil recovery,these reservoirs struggle with low displacement efficiency.This study proposes a method that combines CO_(2)with an oil-soluble viscosity reducer to improve displacement efficiency in the H-n-P process for tight-tuff heavy oil reservoirs.It also focuses on evaluating pore utilization limits and optimizing the injection strategy.Core samples and crude oil from the TH oilfield(a tight-tuff heavy oil reservoir)were used to conduct online NMR core flooding experiments,including depletion development,water,CO_(2),and HDC(CO_(2)combined with an oil-soluble viscosity reducer)H-n-P injection processes.A single-porosity model accurately reflecting its geological characteristics was developed using the GEM component simulator within the CMG numerical simulation software to investigate the optimized schemes and the enhanced oil recovery potential for a tight-tuff heavy oil reservoir in the TH oilfield.This model was utilized to evaluate the impact of various injection strategies on oilfield recovery efficiency.The study was designed and implemented with five distinct injection schemes.Results showed that oil was produced primarily from large and medium pores during the depletion stage,while water H-n-P,with CO_(2)H-n-P,first targeted macropores,then mesopores,and micropores.The lower pore utilization limit was 0.0267μm.In the HDC H-n-P process,most oil was recovered from water-flooded pores.Still,HDC's lower injection capacity increased the pore utilization limit to 0.03μm,making micropore recovery difficult.Experimental and modeling results suggest that the optimal develo p ment plan for the TH oilfield is one cycle of HDC H-n-P followed by two cycles of CO_(2)H-n-P.This strategy leverages HDC's ability to promote water and oil recovery in the early stage and mass transfer and extraction capacity of CO_(2)in later cycles.Additionally,the characteristics of CO_(2)and HDC H-n-P processes,pore utilization,and recoverable oil(at the pore scale)were evaluated.The results of this study are crucial for refining the reservoir development plan. 展开更多
关键词 Tight-tuff heavy oil reservoir Reservoir rock and live oil low limit of pore utilization CO_(2)and HDC huff-and-puff Online NMR Improved oil recovery
原文传递
Bioresource Upgrade for Sustainable Energy,Environment,and Biomedicine 被引量:4
2
作者 Fanghua Li Yiwei Li +13 位作者 KSNovoselov Feng Liang Jiashen Meng Shih‑Hsin Ho Tong Zhao Hui Zhou Awais Ahmad Yinlong Zhu Liangxing Hu Dongxiao Ji Litao Jia Rui Liu Seeram Ramakrishna Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期48-97,共50页
We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).... We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).We acme energy-efficient technologies for sustainable energy and material recovery and applications.The technologies of thermochemical conversion(TC),biochemical conversion(BC),electrochemical conversion(EC),and photochemical conversion(PTC)are summarized for HALUB.Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg^(-1)and total benefit of 749$/ton biomass via TC.Specific surface area of biochar reached 3000 m^(2)g^(-1)via pyrolytic carbonization of waste bean dregs.Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%.Besides,lignocellulosic biomass can contribute to a current density of 672 mA m^(-2)via EC.Bioresource can be 100%selectively synthesized via electrocatalysis through EC and PTC.Machine learning,techno-economic analysis,and life cycle analysis are essential to various upgrading approaches of HALUB.Sustainable biomaterials,sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis,microfluidic and micro/nanomotors beyond are also highlighted.New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed. 展开更多
关键词 High availability low utilization biomass(HALUB) Circular economy Machine learning Energy-efficient conversion Nano-catalysis
在线阅读 下载PDF
Low Voltage Direct Current Supply and Utilization System:Definition,Key Technologies and Development 被引量:3
3
作者 Zhao Ma Yahui Li +1 位作者 Yuanyuan Sun Kaiqi Sun 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期331-350,共20页
With rapid increase of distributed solar power generation and direct current(DC)based loads such as data centers,electric vehicles(EVs),and DC household appliances,the development trend of the power system is changed ... With rapid increase of distributed solar power generation and direct current(DC)based loads such as data centers,electric vehicles(EVs),and DC household appliances,the development trend of the power system is changed from conventional alternate current(AC)to DC.Traditional AC power systems can scarcely meet the development demand of new DC trends,especially since both the generation side and load side are comprised of DC-based electronic power components.With this background,low voltage direct current supply and utilization system(LVDCSUS)has attracted more and more attention for its great advantages over an AC grid to overcome challenges in operation,reliability,and energy loss in renewable energy connection,DC load power utilization and a number of other aspects.However,the definition of the LVDCSUS is still not clear even though many demonstration projects have been put into planning and operation.In order to provide a clear description of LVDCSUS,first,the characteristics of LVDCSUS are illustrated in this paper to show the advance of the LVDCSUS.Second,the potential application scenarios of LVDCSUS are presented in this paper.Third,application of LVDCSUS technologies and some demonstration projects in China are introduced.Besides the development of the LVDCSUS,key technologies,including but not limited to planning and design,voltage levels,control strategies,and key equipment of LVDCSUS,are discussed in this paper.Finally,future application areas and the research orientations of LVDCSUS are analyzed. 展开更多
关键词 Distributed energy resource information communication technology Internet of Things low voltage direct current supply and utilization system renewable energy
原文传递
The Pressure Gradient Elastic Wave: Energy Transfer Process for Compressible Fluids with Pressure Gradient 被引量:1
4
作者 Yan Beliavsky 《Journal of Mechanics Engineering and Automation》 2013年第1期53-64,共12页
The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone w... The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties. 展开更多
关键词 PGEW (Pressure Gradient Elastic Waves) temperature separation Ranque effect vortex chamber heat transfer energysaving low potential heat utilization.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部