The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrati...The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.展开更多
The control network is an important developmental orientation in the remote control system. As the control network and information network are comparatively alike in the framework and technology, we can build a contro...The control network is an important developmental orientation in the remote control system. As the control network and information network are comparatively alike in the framework and technology, we can build a control network which is similar to the common information network. In the era when the information network is becoming increasingly mature, it is a royal road to construct or rebuild a control information network in the development of the control network by relying on the achievements made in the information network or current information resources. This paper expounds the construction idea of the control information network, gives the idiographic realization method and then researches into the real-time problem encountered in the control information network, and presents a three-closed-loop control system based on virtualized reality. The feasibility of the idea is validated via experiments and simulations separately.展开更多
Elman networks' dynamical modeling capability is discussed in this paper firstly.According to Elman networks' unique structure,a weight training algorithm is designed and a nonlinear adaptive controller is con...Elman networks' dynamical modeling capability is discussed in this paper firstly.According to Elman networks' unique structure,a weight training algorithm is designed and a nonlinear adaptive controller is constructed.Without the PE presumption,neural networks controller's closed loop properties are studied and the whole Elman networks' passivity is demonstrated.展开更多
基于二阶广义积分器锁相环(second-order generalized integrator-phase-locked loop,SOGI-PLL)的图腾柱无桥功率因数校正变换器(totem pole bridgeless power factor correction,TBPFC)可有效滤除电网电压谐波,但对于包含谐波及直流分...基于二阶广义积分器锁相环(second-order generalized integrator-phase-locked loop,SOGI-PLL)的图腾柱无桥功率因数校正变换器(totem pole bridgeless power factor correction,TBPFC)可有效滤除电网电压谐波,但对于包含谐波及直流分量的复杂电网抑制谐波能力有限,锁相精确有待提高。为此提出4种改进SOGI-PLL的控制策略:嵌入型SOGI-PLL、级联型SOGI-PLL、并联型SOGI-PLL和增强并联型SOGI-PLL锁相设计方法。通过分别阐述4种策略的改进结构,将4种改进锁相方法与SOGI-PLL进行对比,分析出不同锁相策略的谐波及直流分量的抑制能力,并针对TBPFC变换器电流环比例积分控制器存在谐波抑制能力不足的问题,采用能够改善对电网谐波的抑制能力的比例积分谐振控制器,将该控制器与4种改进锁相环相结合重塑电流内环控制结构,实现谐波抑制,优化电感电流波形质量,降低总谐波失真。经仿真试验证明,与SOGI-PLL相比,所提出的4种改进策略的抑制谐波能力均优于SOGI-PLL,总谐波失真均低于SOGI-PLL。展开更多
文摘The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.
文摘The control network is an important developmental orientation in the remote control system. As the control network and information network are comparatively alike in the framework and technology, we can build a control network which is similar to the common information network. In the era when the information network is becoming increasingly mature, it is a royal road to construct or rebuild a control information network in the development of the control network by relying on the achievements made in the information network or current information resources. This paper expounds the construction idea of the control information network, gives the idiographic realization method and then researches into the real-time problem encountered in the control information network, and presents a three-closed-loop control system based on virtualized reality. The feasibility of the idea is validated via experiments and simulations separately.
基金This research was supported by the National863Project Foundation(863- 51 1 - 945- 0 1 0 ),Tianjin Nat-ural Science Foundation
文摘Elman networks' dynamical modeling capability is discussed in this paper firstly.According to Elman networks' unique structure,a weight training algorithm is designed and a nonlinear adaptive controller is constructed.Without the PE presumption,neural networks controller's closed loop properties are studied and the whole Elman networks' passivity is demonstrated.
文摘基于二阶广义积分器锁相环(second-order generalized integrator-phase-locked loop,SOGI-PLL)的图腾柱无桥功率因数校正变换器(totem pole bridgeless power factor correction,TBPFC)可有效滤除电网电压谐波,但对于包含谐波及直流分量的复杂电网抑制谐波能力有限,锁相精确有待提高。为此提出4种改进SOGI-PLL的控制策略:嵌入型SOGI-PLL、级联型SOGI-PLL、并联型SOGI-PLL和增强并联型SOGI-PLL锁相设计方法。通过分别阐述4种策略的改进结构,将4种改进锁相方法与SOGI-PLL进行对比,分析出不同锁相策略的谐波及直流分量的抑制能力,并针对TBPFC变换器电流环比例积分控制器存在谐波抑制能力不足的问题,采用能够改善对电网谐波的抑制能力的比例积分谐振控制器,将该控制器与4种改进锁相环相结合重塑电流内环控制结构,实现谐波抑制,优化电感电流波形质量,降低总谐波失真。经仿真试验证明,与SOGI-PLL相比,所提出的4种改进策略的抑制谐波能力均优于SOGI-PLL,总谐波失真均低于SOGI-PLL。