A bottleneck automatic identification algorithm based on loop detector data is proposed. The proposed algorithm selects the critical flow rate as the trigger variable of the algorithm which is calculated by the road c...A bottleneck automatic identification algorithm based on loop detector data is proposed. The proposed algorithm selects the critical flow rate as the trigger variable of the algorithm which is calculated by the road conditions the level of service and the proportion of trucks.The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of the occupancy rate and the variance of the occupancy rate.The other process is to identify the downstream of the bottleneck by calculating the difference of the upstream occupancy rate with that of the downstream.In addition the algorithm evaluation standards which are based on the time interval of the data the detection rate and the false alarm rate are discussed.The proposed algorithm is applied to detect the bottleneck locations in the Shanghai Inner Ring Viaduct Dabaishu-Guangzhong road section.The proposed method has a good performance in improving the accuracy and efficiency of bottleneck identification.展开更多
To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerati...To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.展开更多
文摘A bottleneck automatic identification algorithm based on loop detector data is proposed. The proposed algorithm selects the critical flow rate as the trigger variable of the algorithm which is calculated by the road conditions the level of service and the proportion of trucks.The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of the occupancy rate and the variance of the occupancy rate.The other process is to identify the downstream of the bottleneck by calculating the difference of the upstream occupancy rate with that of the downstream.In addition the algorithm evaluation standards which are based on the time interval of the data the detection rate and the false alarm rate are discussed.The proposed algorithm is applied to detect the bottleneck locations in the Shanghai Inner Ring Viaduct Dabaishu-Guangzhong road section.The proposed method has a good performance in improving the accuracy and efficiency of bottleneck identification.
文摘To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.