The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chi...The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chinese Bei Dou Navigation Satellite System(BDS).The long-term perturbation model for the relative motion is developed based on the Hamiltonian model,and the long-term evolution law is analyzed.The relationship between the control boundary of the constellation and the offset of the orbital elements is analyzed,and a general analytical method for calculating the offset of the orbit elements is proposed.The analytical model is further improved when the luni-solar perturbations are included.The long-term evolutions of the BDS MEO constellation within 10 years are illustrated,and the effectiveness of the proposed analytical perturbation compensation calculation approach is compared with the traditional numerical results.We found the fundamental reason for the nonlinear variations of the relative longitude of ascending node and the mean argument of latitude is the long-periodic variations of the orbital inclination due to the luni-solar perturbations.The proposed analytical approach can avoid the numerical iterations,and reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,there is no need for maintaining the BDS MEO constellation within 10 years while using the perturbation compensation method.展开更多
In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based ...In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs.展开更多
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and...A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a fo...Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies.展开更多
Hydrogen production by electrolysis of water is a key technology to achieve green hydrogen energy economy,but it relies on advanced catalyst materials with high efficiency,stability,and wide pH adaptability.In this st...Hydrogen production by electrolysis of water is a key technology to achieve green hydrogen energy economy,but it relies on advanced catalyst materials with high efficiency,stability,and wide pH adaptability.In this study,Ni,Ru,and Pt ternary metals were embedded into nitrogen-doped hollow carbon spheres(NHCSs)by hydrothermal tandem heat treatment to form ternary supported metal nanoparticles with high dispersion and ultra-small particle size(~1.3 nm),which realized efficient hydrogen evolution from multi-scenario electrocatalytic water splitting.In the whole pH range,the performance of NiRuPt/NHCSs is better than that of commercial Pt/C catalyst,and the overpotentials under alkaline,neutral,and acidic conditions are as low as 15.5,20.0,and 29.5 mV,respectively.Under industrial conditions,NiRuPt/NHCSs also have excellent hydrogen evolution reaction(HER)performance,achieving efficient electrolysis of seawater for hydrogen production,and achieving Ampere-level hydrogen production at low voltage(~1.76 V)on integrated membrane electrode assemblies.Density functional theory(DFT)calculations show that in the NiRuPt ternary metal,the Pt site is conducive to promoting the desorption of*H to form H_(2),the Ru site is conducive to promoting the capture of H_(2)O,and the Ni site is conducive to promoting the dissociation of H_(2)O.Therefore,the formed NiRuPt ternary metal synergistically promotes multi-scenario efficient electrolysis of water to produce hydrogen.This study provides a new idea for the design of multi-component metal/carbon-based composite catalysts,and promotes the development of non-noble metal/noble metal composite catalysts in hydrogen production by electrolysis of water.展开更多
Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philologica...Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.展开更多
Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the...Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the preparation of a series of novel copper iridium nanocatalysts with heterostructures and low iridium content for OER.The electrochemical tests revealed higher OER of Cu@Ir_(0.3) catalyst under acidic conditions with a generated current density of 10 mA/cm^(2) at only 284 mV overpotential.The corresponding OER mass activity was estimated to be 1.057 A/mgIr,a value 8.39-fold higher than that of the commercial IrO_(2).After 50 h of endurance testing,the Cu@Ir_(0.3) catalyst preserved excellent catalytic activity with a negligible rise in overpotential and maintained a good heterostructures.Cu@Ir_(0.3) The excellent OER activity can be attributed to its heterostructure,as con-firmed by density functional theory(DFT)calculations,indicating that Cu@Ir The coupling between isoquanta causes charge redistribution,optimizing the adsorption energy of unsaturated Ir sites for oxygen intermediates and reducing the energy barrier of OER free energy determining the rate step.In summary,this method provides a new approach for designing efficient,stable,and low iridium content OER catalysts.展开更多
Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the li...Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed.展开更多
The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural ...The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure.展开更多
Heterostructure engineering has emerged as a promising strategy to enhance the electrochemical CO_(2)reduction reaction(CO_(2)RR)by optimizing interfacial electron transfer.Herein,we report a novel octahedral SnS_(2)/...Heterostructure engineering has emerged as a promising strategy to enhance the electrochemical CO_(2)reduction reaction(CO_(2)RR)by optimizing interfacial electron transfer.Herein,we report a novel octahedral SnS_(2)/SnO_(2)heterojunction catalyst synthesized via an ion-exchange vulcanization method,which achieves exceptional activity and selectivity for CO_(2)-toformate conversion.Through in-situ Raman spectroscopy,ex-situ X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS),we demonstrate that the octahedral SnS_(2)/SnO_(2)heterojunction dynamically restructures into a sulfur-doped Sn/SnO_(2)(Sn(S)/SnO_(2))heterostructure under operating conditions.Density functional theory(DFT)calculations reveal that the Sn(S)/SnO_(2)interface facilitates electron transfer from SnO_(2)to metallic Sn(S),generating a built-in electric field that stabilizes Sn^(4+)in SnO_(2)and accelerates proton-coupled electron transfer to*OCHO intermediates.Consequently,the catalyst achieves a formate Faradaic efficiency exceeding 90% over a broad potential window(-0.6 to -1.0 V vs.reversible hydrogen electrode(RHE))with a high partial current density of -280 mA·cm^(-2),surpassing most reported Sn-based catalysts.This work elucidates the structural dynamics and interfacial enhancement mechanisms of heterojunction catalysts,offering a rational design principle for advanced CO_(2)RR electrocatalysts.展开更多
Various slow slip events(SSEs)with distinct characteristics have been detected globally,particularly in regions with dense Global Navigation Satellite Systems(GNSS)networks.In the Hikurangi subduction zone of New Zeal...Various slow slip events(SSEs)with distinct characteristics have been detected globally,particularly in regions with dense Global Navigation Satellite Systems(GNSS)networks.In the Hikurangi subduction zone of New Zealand,SSEs frequently occur alongside seismic activity,especially in the Manawatu and Kapiti regions.This study analyzes the 2021-2023 Kapiti-Manawatu long-term SSE using daily displacement data(2019-2023)from 53 GPS stations.The network inversion filter(NIF)method is applied to extract slow slip signals,revealing spatial migration with alternating slip between Kapiti and Manawatu,characterized by distinct phases of acceleration and deceleration.Manawatu exhibits higher slip rates,exceeding 4 cm/month,with greater cumulative slip and surface displacement than Kapiti.A moderate temporal correlation(coefficient 0.59)between seismic activity in the region and slip acceleration in Manawatu suggests that seismic events may contribute to the slip,while no significant correlation is observed in Kapiti.展开更多
Urban lakes are vital components of the modern urban water system and landscape design.They play an important role in the construction of urban ecological civilization.However,in recent years,the urban lake ecosystem ...Urban lakes are vital components of the modern urban water system and landscape design.They play an important role in the construction of urban ecological civilization.However,in recent years,the urban lake ecosystem has been increasingly degraded,especially with the frequent cyanobacteria blooms,which directly threatens the maintenance of ecosystem service function and sustainable urban development.In this study,several sedimentary cores were collected from Hudie Lake located in the Yangtze River Delta in China that had not been dredged for centuries.Using one of the sediment cores that spans the past 200 years,we reconstructed the long-term environmental changes and examined the driving mechanisms of both human activities and natural factors affecting the lake's dynamics.Our results indicated that,with the growth of the city,organic matter and nutrients in the lake had gradually increased.Notably,the significant increase in phosphorus had been a key factor driving cyanobacteria blooms in Hudie Lake.Since the 1960s,urban development and changes in land use around the lake had severely disturbed its natural habitats,leading to peak nutrient levels during the period from 2000 to 2010.展开更多
The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more ...The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more regular in dendritic arm and interdendritic area,while both the mass fraction and the size of γ ' phase increase gradually with increasing aging time.During long-term aging,the MC carbide dissolves on the edge to provide the carbon for the formation of M23C6 carbide by the precipitation of Cr at the grain boundary.The rose-shaped γ '/γ eutectic partly dissolves into γ matrix and the aging promotes it transform into raft-shape γ '.The microstructure is generally stable and no needle-like topologically close-packed phase(TCP) can be found after aging for 1 000 h.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that,...Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that, the primary and secondary gamma' particles maintain good thermal stability at 650 and 700 degreesC with aging time up to 3000 h, while the tertiary gamma' is apparently dependent on aging temperature and time. The tertiary gamma' particles undergo a procedure of coarsening, dissolution and eventually complete disappearance with the increasing of aging time and temperature. They exhibit unusual high sensibility upon aging temperature, which is attributed to the lattice misfit between the gamma' precipitates and the matrix in the alloy. The grain boundary phase M23C6 remains stable without forming of sigma phase even with aging time up to 3000 h at 700 degreesC. Microhardness decreases apparently with increasing aging time and aging temperature. Theoretical analysis based on dislocation mechanism indicates that the change of microhardness should be attributed to the evolution of the tertiary gamma' during aging.展开更多
Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary ...Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary from 1977 to 1988. The model incorporated modules for riprap-siltation promotion and waterway dredging. The model can simulate the morphodynamic evolutionary processes occurring in the Modaomen Estuary during the period of interest. We were able to isolate the long-term influences of various human engineering activities and the roles of natural factors in estuarine evolution. The governance projects had the largest effect on the natural development of the estuary, resulting in larger siltation on the west side. Installation of riprap and reclamation of submerged land resulted in scouring of the main Hengzhou Channel causing deep trough out-shift. Severe siltation narrowed the upper end of the Longshiku Deep Trough.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
基金supported by the National Natural Science Foundation of China (No. 61403416)
文摘The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chinese Bei Dou Navigation Satellite System(BDS).The long-term perturbation model for the relative motion is developed based on the Hamiltonian model,and the long-term evolution law is analyzed.The relationship between the control boundary of the constellation and the offset of the orbital elements is analyzed,and a general analytical method for calculating the offset of the orbit elements is proposed.The analytical model is further improved when the luni-solar perturbations are included.The long-term evolutions of the BDS MEO constellation within 10 years are illustrated,and the effectiveness of the proposed analytical perturbation compensation calculation approach is compared with the traditional numerical results.We found the fundamental reason for the nonlinear variations of the relative longitude of ascending node and the mean argument of latitude is the long-periodic variations of the orbital inclination due to the luni-solar perturbations.The proposed analytical approach can avoid the numerical iterations,and reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,there is no need for maintaining the BDS MEO constellation within 10 years while using the perturbation compensation method.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10603002 and 10773004)
文摘In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs.
文摘A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
基金support from the National Natural Science Foundation of China(Nos.12305373 and 52276220)the Guangzhou Basic Research Program(No.SL2024A04J00234).
文摘Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies.
基金financially supported by the Yunnan Fundamental Research Projects(Nos.202401CF070026 and 202501AT070017)the Scientific Research Fund Project of Yunnan Provincial Education Department(No.2024J0134)+1 种基金the Xingdian Talent Program of Yunnan Province,and the Scientific and Technological Project of Yunnan Precious Metals Laboratory(No.YPML-20240502065)Xinjiang Key Laboratory of Novel Functional Materials Chemistry Open Science Project(No.XJLNFMC-202406).
文摘Hydrogen production by electrolysis of water is a key technology to achieve green hydrogen energy economy,but it relies on advanced catalyst materials with high efficiency,stability,and wide pH adaptability.In this study,Ni,Ru,and Pt ternary metals were embedded into nitrogen-doped hollow carbon spheres(NHCSs)by hydrothermal tandem heat treatment to form ternary supported metal nanoparticles with high dispersion and ultra-small particle size(~1.3 nm),which realized efficient hydrogen evolution from multi-scenario electrocatalytic water splitting.In the whole pH range,the performance of NiRuPt/NHCSs is better than that of commercial Pt/C catalyst,and the overpotentials under alkaline,neutral,and acidic conditions are as low as 15.5,20.0,and 29.5 mV,respectively.Under industrial conditions,NiRuPt/NHCSs also have excellent hydrogen evolution reaction(HER)performance,achieving efficient electrolysis of seawater for hydrogen production,and achieving Ampere-level hydrogen production at low voltage(~1.76 V)on integrated membrane electrode assemblies.Density functional theory(DFT)calculations show that in the NiRuPt ternary metal,the Pt site is conducive to promoting the desorption of*H to form H_(2),the Ru site is conducive to promoting the capture of H_(2)O,and the Ni site is conducive to promoting the dissociation of H_(2)O.Therefore,the formed NiRuPt ternary metal synergistically promotes multi-scenario efficient electrolysis of water to produce hydrogen.This study provides a new idea for the design of multi-component metal/carbon-based composite catalysts,and promotes the development of non-noble metal/noble metal composite catalysts in hydrogen production by electrolysis of water.
基金supported by The China Ethnic Medicine Association Research Grant(No.2023MY055-81)Science and Technology Program of the Joint Fund of Scientific Research for the Public Hospitals of Inner Mongolia Academy of Medical Sciences(2023GLLHD177,2023GLLH0174)Inner Mongolia Autonomous Region Regional Medical Center for Specialized Care(2025).
文摘Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.
基金supported by the Major Science and Technology Special Plan of Yunnan Province(Nos.202302AB080012 and 202402AB080004)the National Natural Science Foundation of China(No.22264025)+1 种基金the Basic Research Foundation of Yunnan Province(Nos.202401AS070033 and 202501AT070055)the Reserve talents for young and middleaged academic and technical leaders project of Yunnan Province(No.202405AC350071).
文摘Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the preparation of a series of novel copper iridium nanocatalysts with heterostructures and low iridium content for OER.The electrochemical tests revealed higher OER of Cu@Ir_(0.3) catalyst under acidic conditions with a generated current density of 10 mA/cm^(2) at only 284 mV overpotential.The corresponding OER mass activity was estimated to be 1.057 A/mgIr,a value 8.39-fold higher than that of the commercial IrO_(2).After 50 h of endurance testing,the Cu@Ir_(0.3) catalyst preserved excellent catalytic activity with a negligible rise in overpotential and maintained a good heterostructures.Cu@Ir_(0.3) The excellent OER activity can be attributed to its heterostructure,as con-firmed by density functional theory(DFT)calculations,indicating that Cu@Ir The coupling between isoquanta causes charge redistribution,optimizing the adsorption energy of unsaturated Ir sites for oxygen intermediates and reducing the energy barrier of OER free energy determining the rate step.In summary,this method provides a new approach for designing efficient,stable,and low iridium content OER catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22373063 and 22302005)Fundamental Research Funds for the Central Universities of China(No.GK202203002)+1 种基金China Postdoctoral Science Foundation(No.2023M730044)Technology Innovation Leading Program of Shaanxi(Program No.2023KXJ-007).
文摘Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed.
基金supported by the National Natural Science Foundation of China (Nos. 52075449, 51975480)。
文摘The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure.
基金the Natural Science Foundation of Jiangsu Province(No.BK20253049)the Science and Technology Program of Xuzhou(No.KC25028)+3 种基金the Basic Science(Natural Science)Research Project of Higher Education Institutions in Jiangsu Province(No.25KJB430013)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJA150003)the National Natural Science Foundation of China(No.22271122)the Xuzhou Key Research and Development Program(Social Development)(No.KC23298).
文摘Heterostructure engineering has emerged as a promising strategy to enhance the electrochemical CO_(2)reduction reaction(CO_(2)RR)by optimizing interfacial electron transfer.Herein,we report a novel octahedral SnS_(2)/SnO_(2)heterojunction catalyst synthesized via an ion-exchange vulcanization method,which achieves exceptional activity and selectivity for CO_(2)-toformate conversion.Through in-situ Raman spectroscopy,ex-situ X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS),we demonstrate that the octahedral SnS_(2)/SnO_(2)heterojunction dynamically restructures into a sulfur-doped Sn/SnO_(2)(Sn(S)/SnO_(2))heterostructure under operating conditions.Density functional theory(DFT)calculations reveal that the Sn(S)/SnO_(2)interface facilitates electron transfer from SnO_(2)to metallic Sn(S),generating a built-in electric field that stabilizes Sn^(4+)in SnO_(2)and accelerates proton-coupled electron transfer to*OCHO intermediates.Consequently,the catalyst achieves a formate Faradaic efficiency exceeding 90% over a broad potential window(-0.6 to -1.0 V vs.reversible hydrogen electrode(RHE))with a high partial current density of -280 mA·cm^(-2),surpassing most reported Sn-based catalysts.This work elucidates the structural dynamics and interfacial enhancement mechanisms of heterojunction catalysts,offering a rational design principle for advanced CO_(2)RR electrocatalysts.
基金funded by the National Natural Science Foundation of China(41704031,42374040)the Natural Science Foundation of Jiangxi Science and Technology Department(20232BAB203073)the Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake,Ministry of Natural Resources(MEMI-2021-2022-29).
文摘Various slow slip events(SSEs)with distinct characteristics have been detected globally,particularly in regions with dense Global Navigation Satellite Systems(GNSS)networks.In the Hikurangi subduction zone of New Zealand,SSEs frequently occur alongside seismic activity,especially in the Manawatu and Kapiti regions.This study analyzes the 2021-2023 Kapiti-Manawatu long-term SSE using daily displacement data(2019-2023)from 53 GPS stations.The network inversion filter(NIF)method is applied to extract slow slip signals,revealing spatial migration with alternating slip between Kapiti and Manawatu,characterized by distinct phases of acceleration and deceleration.Manawatu exhibits higher slip rates,exceeding 4 cm/month,with greater cumulative slip and surface displacement than Kapiti.A moderate temporal correlation(coefficient 0.59)between seismic activity in the region and slip acceleration in Manawatu suggests that seismic events may contribute to the slip,while no significant correlation is observed in Kapiti.
基金State Key Laboratory of Lake and Watershed Science for Water Security,No.2024SKL016National Natural Science Foundation of China,No.42002204,No.42373060+1 种基金Innovative Training Program for University Students,No.2024219,No.2024224Jiangsu Provincial Government Scholarship Program for Studying Abroad,No.2024-075。
文摘Urban lakes are vital components of the modern urban water system and landscape design.They play an important role in the construction of urban ecological civilization.However,in recent years,the urban lake ecosystem has been increasingly degraded,especially with the frequent cyanobacteria blooms,which directly threatens the maintenance of ecosystem service function and sustainable urban development.In this study,several sedimentary cores were collected from Hudie Lake located in the Yangtze River Delta in China that had not been dredged for centuries.Using one of the sediment cores that spans the past 200 years,we reconstructed the long-term environmental changes and examined the driving mechanisms of both human activities and natural factors affecting the lake's dynamics.Our results indicated that,with the growth of the city,organic matter and nutrients in the lake had gradually increased.Notably,the significant increase in phosphorus had been a key factor driving cyanobacteria blooms in Hudie Lake.Since the 1960s,urban development and changes in land use around the lake had severely disturbed its natural habitats,leading to peak nutrient levels during the period from 2000 to 2010.
基金Projects(2006CB605005,2010CB631203) supported by the National Basic Research Program of ChinaProject(IRT0713) supported by Changjiang Scholars and Innovative Research Team in University,China
文摘The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more regular in dendritic arm and interdendritic area,while both the mass fraction and the size of γ ' phase increase gradually with increasing aging time.During long-term aging,the MC carbide dissolves on the edge to provide the carbon for the formation of M23C6 carbide by the precipitation of Cr at the grain boundary.The rose-shaped γ '/γ eutectic partly dissolves into γ matrix and the aging promotes it transform into raft-shape γ '.The microstructure is generally stable and no needle-like topologically close-packed phase(TCP) can be found after aging for 1 000 h.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
文摘Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that, the primary and secondary gamma' particles maintain good thermal stability at 650 and 700 degreesC with aging time up to 3000 h, while the tertiary gamma' is apparently dependent on aging temperature and time. The tertiary gamma' particles undergo a procedure of coarsening, dissolution and eventually complete disappearance with the increasing of aging time and temperature. They exhibit unusual high sensibility upon aging temperature, which is attributed to the lattice misfit between the gamma' precipitates and the matrix in the alloy. The grain boundary phase M23C6 remains stable without forming of sigma phase even with aging time up to 3000 h at 700 degreesC. Microhardness decreases apparently with increasing aging time and aging temperature. Theoretical analysis based on dislocation mechanism indicates that the change of microhardness should be attributed to the evolution of the tertiary gamma' during aging.
文摘Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary from 1977 to 1988. The model incorporated modules for riprap-siltation promotion and waterway dredging. The model can simulate the morphodynamic evolutionary processes occurring in the Modaomen Estuary during the period of interest. We were able to isolate the long-term influences of various human engineering activities and the roles of natural factors in estuarine evolution. The governance projects had the largest effect on the natural development of the estuary, resulting in larger siltation on the west side. Installation of riprap and reclamation of submerged land resulted in scouring of the main Hengzhou Channel causing deep trough out-shift. Severe siltation narrowed the upper end of the Longshiku Deep Trough.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).