Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,envir...Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.展开更多
Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,includ...Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,including antiviral,antibacterial,antioxidant,hypoglycemic and lipid-lowering,and anti-inflammatory effects.This review summarizes the health effects and pharmacodynamic mechanisms of L.japonica extracts and the major active ingredients in these extracts,and the structures,metabolic process in vivo,and biotransformation processes of these compounds.In addition,the current status of the development of L.japonica-related functional foods is summarized.The aim is to provide a theoretical basis and reference for the further development and use of the active ingredients in L.japonica as functional foods for disease prevention and treatment.展开更多
Quinoa is pseudo cereal and considered as full nutritional food for its functional ingredients such as peptides,polysaccharides,saponins and polyphenols.Up to now,over 20 phenolic compounds have been reported in quino...Quinoa is pseudo cereal and considered as full nutritional food for its functional ingredients such as peptides,polysaccharides,saponins and polyphenols.Up to now,over 20 phenolic compounds have been reported in quinoa,and these polyphenols are related to anti-cancer,anti-inflammatory,anti-obesity,anti-diabetic and cardioprotective activities.Recently,more and more attentions are focused on quinoa in the food and pharmaceutical fields.Many new products such as bakery,beverage and meat product made from quinoa are popular in the market.This article presents a review of the literature on the function and application of polyphenols in quinoa.The review will benefit the researchers working with nutrition,functional diets of quinoa.展开更多
The application of generative artificial intelligence(GAI)in the judicial domain represents an innovative approach to achieving digital justice.GAI’s functionalities are primarily exhibited in the enhancement of judi...The application of generative artificial intelligence(GAI)in the judicial domain represents an innovative approach to achieving digital justice.GAI’s functionalities are primarily exhibited in the enhancement of judicial efficiency,improving the accuracy and fairness of adjudications,promoting the uniform application of the law,and enhancing transparency and engagement in judicial processes.However,these advancements are accompanied by potential risks and challenges in technology,adjudication,and ethics.It is thus essential to strengthen privacy protection during the processing and transmission of data,ensure data security and confidentiality,and establish and refine clear legal norms regarding the roles,responsibilities,and legal obligations of GAI in judicial settings.In addition,ethical guidelines that delineate the behavioral boundaries and value orientations of GAI need to be formulated.Collectively,these elements can form a trinary model of technical controls,legal norms,and ethical constraints,to facilitate the modernization and intelligent development of the judicial system.展开更多
Under the background of the current energy crisis and environmental pollution,the development of green and sustainable materials has become particularly urgent.As one of the most abundant natural polymers on earth,cel...Under the background of the current energy crisis and environmental pollution,the development of green and sustainable materials has become particularly urgent.As one of the most abundant natural polymers on earth,cellulose has attracted wide attention due to its green recycling,sustainable development,degradability,and low cost.Therefore,cellulose and its derivatives were used as the starting point for comprehensive analysis.First,the basic structural properties of cellulose were discussed,and then the extraction and utilization methods of cellulose were reviewed,including Sodium Hydroxide based solvent system,N,N-Dimethylacetamide/Lithium Chloride System,N-Methylmorpholine-N-Oxide(NMMO)system,ionic liquids(ILs)system,and deep eutectic solvent(DES)system.Then,the functional modification techniques of cellulose are introduced,including nano-modification,small molecule modification,and macromolecular modification.Finally,the potential applications of cellulose in the fields of reinforcement materials,self-healing materials,radioactive cooling,nanogenerators,and biomedicine were discussed.At the end of this paper,the challenges and future development direction of cellulose materials are prospectively analyzed,aiming at providing guidance and inspiration for the research and application in related fields.展开更多
Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position G...Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position GPs as dual-purpose agents for medicinal and functional food development.This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action,such as TLR signaling in immune modulation,apoptosis pathways in anti-tumor activity,and their prebiotic effects on gut microbiota.Additionally,the structure-activity relationships(SARs)of GPs are highlighted to elucidate their biological efficacy.Advances in green extraction techniques,including ultrasonic-assisted and enzymatic methods,are discussed for their roles in enhancing yield and aligning with sustainable production principles.Furthermore,the review addresses biotechnological innovations in polysaccharide biosynthesis,improving production efficiency and making large-scale production feasible.These insights,combined with ongoing research into their bioactivity,provide a solid foundation for developing health-promoting functional food products that incorporate GPs.Furthermore,future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides.展开更多
In order to promote the transformation and high-quality development of strawberry industry and speed up the application of functional microbial products in strawberry,the application technology of functional microbial...In order to promote the transformation and high-quality development of strawberry industry and speed up the application of functional microbial products in strawberry,the application technology of functional microbial products in strawberry planting is studied and summarized.It mainly includes:the periods and methods of continuous cropping strawberry soil reduction and disinfection at high temperature,before and after strawberry planting,before plastic film mulching and whole process of plant spraying.Through multi-point test and demonstration,the purpose of advancing the season of strawberries,improving the quality,increasing production and increasing efficiency is achieved,and there is no risk of agricultural residue pollution,which meets the needs of people's consumption upgrading.Therefore,the application of functional microbial products in green ecological planting is very necessary,and it is worth further speeding up the demonstration and promotion.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
In this paper, the author analyzed some cryptographic properties of a class of logical functions, f(x,y)=(q(x),...,q(x))·y+h(x),over Galois rings and residue rings, presented the relationship between the characte...In this paper, the author analyzed some cryptographic properties of a class of logical functions, f(x,y)=(q(x),...,q(x))·y+h(x),over Galois rings and residue rings, presented the relationship between the character spectrum of f(x,y) and the character speetrum of q(x),h(x) and the relationship between the cryptographic properties of f(x,y) and the cryptographic properties of h(x).展开更多
Based on S-rough sets(singular rough sets), this paper presents function S-rough sets (function singular rough sets)and its mathematical structures and features. Function S-rough sets has two forms: function one ...Based on S-rough sets(singular rough sets), this paper presents function S-rough sets (function singular rough sets)and its mathematical structures and features. Function S-rough sets has two forms: function one direction S-rough sets (function one direction singular rough sets) and function two direction S-rough sets (function two direction singular rough sets). This paper advances the relationship theorem of function S-rough sets and S-rough sets. Function S-rough sets is the general form of S-rough sets, and S-rough sets is the special ease of function S-rough sets. In this paper, applications of function S-rough sets in rough law mining-discovery of system are given. Function S-rough sets is a new research direction of rough sets and rough system.展开更多
Systemic-functional linguistics considers function and semantics as the basis of human language and communicative activity. In recent years, Systemic-functional linguistics has been applied in such areas as natural la...Systemic-functional linguistics considers function and semantics as the basis of human language and communicative activity. In recent years, Systemic-functional linguistics has been applied in such areas as natural language processing, early language learning, language education, stylistics, foreign language teaching, translation and stylistics. It sheds new light on the further application of this linguistic theory in other fields.展开更多
Synthesis of magnetic nanoparticles (MNPs) is one of the most active research areas in advanced materials. MNPs that have magnetic properties and other functionalities have been demonstrated to show great promise in...Synthesis of magnetic nanoparticles (MNPs) is one of the most active research areas in advanced materials. MNPs that have magnetic properties and other functionalities have been demonstrated to show great promise in nanomedical applications. This review summarizes the current MNPs preparation, functionalization and stabilization methods. It also analyzes the detailed features of MNPs. And furthermore it highlights some actual case analyses of these MNPs for disease therapy, drug delivery, hyperthermia, bioseparation and bioimaging applications.展开更多
Recently, polymers with aggregation-induced emission(AIE) effects have attracted significant attention due to their broad applications in luminescence sensors, stimuli responsive materials, electroluminescence devices...Recently, polymers with aggregation-induced emission(AIE) effects have attracted significant attention due to their broad applications in luminescence sensors, stimuli responsive materials, electroluminescence devices, etc. In this review, we summarize recent advances concerning AIE polymers. Four types of AIE polymers including end-functionalized polymers, side-chain polymers, main-chain polymers, and other polymers according to the location of AIEgens, are described. Their synthetic preparation, optical property, AIE effects, and applications are also illustrated in this review.展开更多
Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pu...Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation disp...Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.展开更多
In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their...In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their logical derivatives of order α.展开更多
This paper discusses the definition and properties of multivalued symmetric functions, points out that a multivalued symmetric function can be decomposed according to the value of the function j. The subfunction Lj co...This paper discusses the definition and properties of multivalued symmetric functions, points out that a multivalued symmetric function can be decomposed according to the value of the function j. The subfunction Lj corresponding to j must be a symmetric function, and it may be expressed as the sum of products form of degenerated multivalued fundamental symmetric functions. Based on this consideration, the circuit realization for the multivalued symmetric functions based on full adders is proposed.展开更多
There are many kinds of special relationships between multiple-valued logical func-tions and their variables, and they are difficult to be judged from their expressions. In thispaper, some sufficient and necessary con...There are many kinds of special relationships between multiple-valued logical func-tions and their variables, and they are difficult to be judged from their expressions. In thispaper, some sufficient and necessary conditions of the independence and statistical independenceof multiple-valued logical functions on their variables are given. Some conditions of algebraicindependence of multiple-valued logical functions on some of their variables and the way to de-generate a function to the greatest extent are proposed, and some applications of these resultsare indicated. All the results are studied by using Chrestenson spectral techniques.展开更多
基金supported by the National Natural Science Foundation of China(No.51574105)the Science and Technology Program of Hebei Province,China(No.23564101D)+2 种基金the Natural Science Foundation of Hebei Province,China(No.E2021209147)the Key Research Project of North China University of Science and Technology(No.ZD-ST-202308)the Postgraduate Innovation Funding Project of Hebei Province,China(No.CXZZBS2024135).
文摘Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.
基金supports from the National Natural Science Foundation of China(82130112,U24A20789)Beijing Hospitals Authority Ascent Plan(DFL20190702)Youth Beijing Scholar(2022-051)。
文摘Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,including antiviral,antibacterial,antioxidant,hypoglycemic and lipid-lowering,and anti-inflammatory effects.This review summarizes the health effects and pharmacodynamic mechanisms of L.japonica extracts and the major active ingredients in these extracts,and the structures,metabolic process in vivo,and biotransformation processes of these compounds.In addition,the current status of the development of L.japonica-related functional foods is summarized.The aim is to provide a theoretical basis and reference for the further development and use of the active ingredients in L.japonica as functional foods for disease prevention and treatment.
文摘Quinoa is pseudo cereal and considered as full nutritional food for its functional ingredients such as peptides,polysaccharides,saponins and polyphenols.Up to now,over 20 phenolic compounds have been reported in quinoa,and these polyphenols are related to anti-cancer,anti-inflammatory,anti-obesity,anti-diabetic and cardioprotective activities.Recently,more and more attentions are focused on quinoa in the food and pharmaceutical fields.Many new products such as bakery,beverage and meat product made from quinoa are popular in the market.This article presents a review of the literature on the function and application of polyphenols in quinoa.The review will benefit the researchers working with nutrition,functional diets of quinoa.
文摘The application of generative artificial intelligence(GAI)in the judicial domain represents an innovative approach to achieving digital justice.GAI’s functionalities are primarily exhibited in the enhancement of judicial efficiency,improving the accuracy and fairness of adjudications,promoting the uniform application of the law,and enhancing transparency and engagement in judicial processes.However,these advancements are accompanied by potential risks and challenges in technology,adjudication,and ethics.It is thus essential to strengthen privacy protection during the processing and transmission of data,ensure data security and confidentiality,and establish and refine clear legal norms regarding the roles,responsibilities,and legal obligations of GAI in judicial settings.In addition,ethical guidelines that delineate the behavioral boundaries and value orientations of GAI need to be formulated.Collectively,these elements can form a trinary model of technical controls,legal norms,and ethical constraints,to facilitate the modernization and intelligent development of the judicial system.
基金supported by Research Fund for the Doctoral Program of Higher Education of China(20134420120009)Science and Technology Planning Project of Guangdong(2014A010105047)Science and Technology Planning Project of Guangzhou City(201707010367).
文摘Under the background of the current energy crisis and environmental pollution,the development of green and sustainable materials has become particularly urgent.As one of the most abundant natural polymers on earth,cellulose has attracted wide attention due to its green recycling,sustainable development,degradability,and low cost.Therefore,cellulose and its derivatives were used as the starting point for comprehensive analysis.First,the basic structural properties of cellulose were discussed,and then the extraction and utilization methods of cellulose were reviewed,including Sodium Hydroxide based solvent system,N,N-Dimethylacetamide/Lithium Chloride System,N-Methylmorpholine-N-Oxide(NMMO)system,ionic liquids(ILs)system,and deep eutectic solvent(DES)system.Then,the functional modification techniques of cellulose are introduced,including nano-modification,small molecule modification,and macromolecular modification.Finally,the potential applications of cellulose in the fields of reinforcement materials,self-healing materials,radioactive cooling,nanogenerators,and biomedicine were discussed.At the end of this paper,the challenges and future development direction of cellulose materials are prospectively analyzed,aiming at providing guidance and inspiration for the research and application in related fields.
基金supported by the National Natural Science Foundation of China(Nos.82373762,31872675)Major Special Programe of science and technology of Yunnan(202402AA310032,202305AH340005)+1 种基金the Cooperation Project with DR PLANT Company(2023)the Foundation of the State Key Laboratory of Phytochemistry and Plant Resources in West China(Nos.P2020-KF02,P2022-KF10).
文摘Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position GPs as dual-purpose agents for medicinal and functional food development.This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action,such as TLR signaling in immune modulation,apoptosis pathways in anti-tumor activity,and their prebiotic effects on gut microbiota.Additionally,the structure-activity relationships(SARs)of GPs are highlighted to elucidate their biological efficacy.Advances in green extraction techniques,including ultrasonic-assisted and enzymatic methods,are discussed for their roles in enhancing yield and aligning with sustainable production principles.Furthermore,the review addresses biotechnological innovations in polysaccharide biosynthesis,improving production efficiency and making large-scale production feasible.These insights,combined with ongoing research into their bioactivity,provide a solid foundation for developing health-promoting functional food products that incorporate GPs.Furthermore,future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides.
基金Supported by Zhenjiang Key R&D Program(NY2020017).
文摘In order to promote the transformation and high-quality development of strawberry industry and speed up the application of functional microbial products in strawberry,the application technology of functional microbial products in strawberry planting is studied and summarized.It mainly includes:the periods and methods of continuous cropping strawberry soil reduction and disinfection at high temperature,before and after strawberry planting,before plastic film mulching and whole process of plant spraying.Through multi-point test and demonstration,the purpose of advancing the season of strawberries,improving the quality,increasing production and increasing efficiency is achieved,and there is no risk of agricultural residue pollution,which meets the needs of people's consumption upgrading.Therefore,the application of functional microbial products in green ecological planting is very necessary,and it is worth further speeding up the demonstration and promotion.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
文摘In this paper, the author analyzed some cryptographic properties of a class of logical functions, f(x,y)=(q(x),...,q(x))·y+h(x),over Galois rings and residue rings, presented the relationship between the character spectrum of f(x,y) and the character speetrum of q(x),h(x) and the relationship between the cryptographic properties of f(x,y) and the cryptographic properties of h(x).
基金This project was surpported by the Natural Science Foundation of Shandong Province of China (Y2004A94)
文摘Based on S-rough sets(singular rough sets), this paper presents function S-rough sets (function singular rough sets)and its mathematical structures and features. Function S-rough sets has two forms: function one direction S-rough sets (function one direction singular rough sets) and function two direction S-rough sets (function two direction singular rough sets). This paper advances the relationship theorem of function S-rough sets and S-rough sets. Function S-rough sets is the general form of S-rough sets, and S-rough sets is the special ease of function S-rough sets. In this paper, applications of function S-rough sets in rough law mining-discovery of system are given. Function S-rough sets is a new research direction of rough sets and rough system.
文摘Systemic-functional linguistics considers function and semantics as the basis of human language and communicative activity. In recent years, Systemic-functional linguistics has been applied in such areas as natural language processing, early language learning, language education, stylistics, foreign language teaching, translation and stylistics. It sheds new light on the further application of this linguistic theory in other fields.
基金financial support from the National Natural Science Foundation of China(No. 81773642)Guangdong-Hong Kong Technology Cooperation Fund(No. 2017A050506016)+4 种基金the Science and Technology Planning Program of Guangzhou City, China (No. 2017A020214012)Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 17KJB430019)Natural Science Foundation of the Jiangsu Province (No. SBK2018041659)Jiangsu Key Laboratory of Green Process Equipment (No. GPE201702)GF Scientific Research Project of Nanjing Tech University
文摘Synthesis of magnetic nanoparticles (MNPs) is one of the most active research areas in advanced materials. MNPs that have magnetic properties and other functionalities have been demonstrated to show great promise in nanomedical applications. This review summarizes the current MNPs preparation, functionalization and stabilization methods. It also analyzes the detailed features of MNPs. And furthermore it highlights some actual case analyses of these MNPs for disease therapy, drug delivery, hyperthermia, bioseparation and bioimaging applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 21776190, 21336005, and 51773144)PAPD in Jiangsu Province
文摘Recently, polymers with aggregation-induced emission(AIE) effects have attracted significant attention due to their broad applications in luminescence sensors, stimuli responsive materials, electroluminescence devices, etc. In this review, we summarize recent advances concerning AIE polymers. Four types of AIE polymers including end-functionalized polymers, side-chain polymers, main-chain polymers, and other polymers according to the location of AIEgens, are described. Their synthetic preparation, optical property, AIE effects, and applications are also illustrated in this review.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11674161,11174122 and 11134004)the Six Big Talent Peak Project from Jiangsu Province(Grant No.XCL-004)open project of National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M28026)
文摘Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金Foundation items: High-technology Research and Development Programme of China (2007AA03Z544) Aeronautical Science Foundation of China (20075221001)
文摘Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.
文摘In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their logical derivatives of order α.
基金This study was supported by the Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the State of Oklahoma through the Project AR062-034, and the United States Department of Energy under the Genomics: GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSShttp://vimss.lbl.gov), Environmental Remediation Science Program (ERSP), Office of Biological and Environmental Research, Office of Science.
文摘This paper discusses the definition and properties of multivalued symmetric functions, points out that a multivalued symmetric function can be decomposed according to the value of the function j. The subfunction Lj corresponding to j must be a symmetric function, and it may be expressed as the sum of products form of degenerated multivalued fundamental symmetric functions. Based on this consideration, the circuit realization for the multivalued symmetric functions based on full adders is proposed.
文摘There are many kinds of special relationships between multiple-valued logical func-tions and their variables, and they are difficult to be judged from their expressions. In thispaper, some sufficient and necessary conditions of the independence and statistical independenceof multiple-valued logical functions on their variables are given. Some conditions of algebraicindependence of multiple-valued logical functions on some of their variables and the way to de-generate a function to the greatest extent are proposed, and some applications of these resultsare indicated. All the results are studied by using Chrestenson spectral techniques.